L(s) = 1 | + (0.866 − 0.5i)2-s + (0.499 − 0.866i)4-s − i·5-s − 0.999i·8-s + (−0.5 − 0.866i)10-s + (2.59 − 1.5i)11-s + (−1 − 3.46i)13-s + (−0.5 − 0.866i)16-s + (−3 − 1.73i)19-s + (−0.866 − 0.499i)20-s + (1.5 − 2.59i)22-s + (0.866 + 1.5i)23-s − 25-s + (−2.59 − 2.49i)26-s + (0.866 + 1.5i)29-s + ⋯ |
L(s) = 1 | + (0.612 − 0.353i)2-s + (0.249 − 0.433i)4-s − 0.447i·5-s − 0.353i·8-s + (−0.158 − 0.273i)10-s + (0.783 − 0.452i)11-s + (−0.277 − 0.960i)13-s + (−0.125 − 0.216i)16-s + (−0.688 − 0.397i)19-s + (−0.193 − 0.111i)20-s + (0.319 − 0.553i)22-s + (0.180 + 0.312i)23-s − 0.200·25-s + (−0.509 − 0.490i)26-s + (0.160 + 0.278i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.252 + 0.967i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.252 + 0.967i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.181919814\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.181919814\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 + 0.5i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + iT \) |
| 13 | \( 1 + (1 + 3.46i)T \) |
good | 7 | \( 1 + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.59 + 1.5i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (3 + 1.73i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.866 - 1.5i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.866 - 1.5i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 5.19iT - 31T^{2} \) |
| 37 | \( 1 + (-1.5 + 0.866i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-5.19 + 3i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.5 + 0.866i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 3iT - 47T^{2} \) |
| 53 | \( 1 + 6.92T + 53T^{2} \) |
| 59 | \( 1 + (-7.79 - 4.5i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-4 + 6.92i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3 - 1.73i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-5.19 - 3i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 73T^{2} \) |
| 79 | \( 1 + 11T + 79T^{2} \) |
| 83 | \( 1 - 6iT - 83T^{2} \) |
| 89 | \( 1 + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (3 + 1.73i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.604499555199901700940047732397, −8.804378340739875346356600194729, −7.939031323417934597573968703944, −6.90348050415290383759791082399, −5.99043954139401541718245953443, −5.22760902524571996164334225796, −4.26221583108399137086613038056, −3.38115471330529954600344171391, −2.21140690244419458182422680365, −0.78381860323698292894134219631,
1.76261844795353970379534763981, 2.94481903669729730426138014031, 4.10249977911475551203351956351, 4.69827183866046425205551955935, 5.98517544037203685004062885159, 6.63133891886517095599378897726, 7.29436354475065244556321123306, 8.283662307200893399989747275925, 9.183351519736377013901363239956, 9.975987526858963500860821640516