L(s) = 1 | + (0.866 − 0.5i)2-s + (0.499 − 0.866i)4-s − i·5-s + (1.14 + 0.661i)7-s − 0.999i·8-s + (−0.5 − 0.866i)10-s + (3.99 − 2.30i)11-s + (3.20 + 1.66i)13-s + 1.32·14-s + (−0.5 − 0.866i)16-s + (−2 + 3.46i)17-s + (1.98 + 1.14i)19-s + (−0.866 − 0.499i)20-s + (2.30 − 3.99i)22-s + (−4.33 − 7.50i)23-s + ⋯ |
L(s) = 1 | + (0.612 − 0.353i)2-s + (0.249 − 0.433i)4-s − 0.447i·5-s + (0.432 + 0.249i)7-s − 0.353i·8-s + (−0.158 − 0.273i)10-s + (1.20 − 0.695i)11-s + (0.887 + 0.460i)13-s + 0.353·14-s + (−0.125 − 0.216i)16-s + (−0.485 + 0.840i)17-s + (0.455 + 0.262i)19-s + (−0.193 − 0.111i)20-s + (0.491 − 0.851i)22-s + (−0.903 − 1.56i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.527 + 0.849i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.527 + 0.849i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.655463558\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.655463558\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 + 0.5i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + iT \) |
| 13 | \( 1 + (-3.20 - 1.66i)T \) |
good | 7 | \( 1 + (-1.14 - 0.661i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-3.99 + 2.30i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (2 - 3.46i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.98 - 1.14i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (4.33 + 7.50i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1.01 + 1.75i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 10.1iT - 31T^{2} \) |
| 37 | \( 1 + (-5.89 + 3.40i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-4.02 + 2.32i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.30 + 7.45i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 9.10iT - 47T^{2} \) |
| 53 | \( 1 + 0.826T + 53T^{2} \) |
| 59 | \( 1 + (2.72 + 1.57i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (0.267 - 0.464i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.75 - 1.59i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-9.81 - 5.66i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 6.28iT - 73T^{2} \) |
| 79 | \( 1 - 2.96T + 79T^{2} \) |
| 83 | \( 1 - 15.8iT - 83T^{2} \) |
| 89 | \( 1 + (10.2 - 5.93i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (7.63 + 4.40i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.655717121460296965295360527392, −8.664780803765445849952709122290, −8.376684859097706404942639134163, −6.85860802463442772773264128782, −6.17950062301322650712268443999, −5.38004825651482736427678585655, −4.19138868856853126226484810827, −3.73396721354986972488526500414, −2.20699698967182890680071520121, −1.12969542336146042673606271451,
1.46706815936026366543054908359, 2.86640319679756095697962114484, 3.94542360508794756095070422306, 4.61150565337369227631774114126, 5.85809208814038091954361961953, 6.41735658283344513530932775125, 7.52586224527797620437056732636, 7.85206244581797776415324947431, 9.278678826612461788018744301921, 9.675169797466206280564589728573