Properties

Label 2-1170-1.1-c3-0-54
Degree $2$
Conductor $1170$
Sign $-1$
Analytic cond. $69.0322$
Root an. cond. $8.30856$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 4·4-s + 5·5-s − 24·7-s + 8·8-s + 10·10-s + 32·11-s + 13·13-s − 48·14-s + 16·16-s − 78·17-s − 32·19-s + 20·20-s + 64·22-s − 158·23-s + 25·25-s + 26·26-s − 96·28-s − 126·29-s + 250·31-s + 32·32-s − 156·34-s − 120·35-s + 38·37-s − 64·38-s + 40·40-s − 90·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.447·5-s − 1.29·7-s + 0.353·8-s + 0.316·10-s + 0.877·11-s + 0.277·13-s − 0.916·14-s + 1/4·16-s − 1.11·17-s − 0.386·19-s + 0.223·20-s + 0.620·22-s − 1.43·23-s + 1/5·25-s + 0.196·26-s − 0.647·28-s − 0.806·29-s + 1.44·31-s + 0.176·32-s − 0.786·34-s − 0.579·35-s + 0.168·37-s − 0.273·38-s + 0.158·40-s − 0.342·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1170\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 13\)
Sign: $-1$
Analytic conductor: \(69.0322\)
Root analytic conductor: \(8.30856\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1170,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p T \)
3 \( 1 \)
5 \( 1 - p T \)
13 \( 1 - p T \)
good7 \( 1 + 24 T + p^{3} T^{2} \)
11 \( 1 - 32 T + p^{3} T^{2} \)
17 \( 1 + 78 T + p^{3} T^{2} \)
19 \( 1 + 32 T + p^{3} T^{2} \)
23 \( 1 + 158 T + p^{3} T^{2} \)
29 \( 1 + 126 T + p^{3} T^{2} \)
31 \( 1 - 250 T + p^{3} T^{2} \)
37 \( 1 - 38 T + p^{3} T^{2} \)
41 \( 1 + 90 T + p^{3} T^{2} \)
43 \( 1 + 428 T + p^{3} T^{2} \)
47 \( 1 - 84 T + p^{3} T^{2} \)
53 \( 1 + 236 T + p^{3} T^{2} \)
59 \( 1 - 188 T + p^{3} T^{2} \)
61 \( 1 + 170 T + p^{3} T^{2} \)
67 \( 1 + 78 T + p^{3} T^{2} \)
71 \( 1 + 16 T + p^{3} T^{2} \)
73 \( 1 + 1012 T + p^{3} T^{2} \)
79 \( 1 + 16 p T + p^{3} T^{2} \)
83 \( 1 - 60 T + p^{3} T^{2} \)
89 \( 1 - 1010 T + p^{3} T^{2} \)
97 \( 1 - 372 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.121279223649185586386626270498, −8.201913402516203246774975732630, −6.88845762720820349347712946630, −6.41271810586749764311972996003, −5.80530936665485637456309941288, −4.50596107460498576066103106824, −3.74949914487496881264070984712, −2.75631234700538252266863372668, −1.65662243114137216619605093476, 0, 1.65662243114137216619605093476, 2.75631234700538252266863372668, 3.74949914487496881264070984712, 4.50596107460498576066103106824, 5.80530936665485637456309941288, 6.41271810586749764311972996003, 6.88845762720820349347712946630, 8.201913402516203246774975732630, 9.121279223649185586386626270498

Graph of the $Z$-function along the critical line