Properties

Label 2-1170-1.1-c3-0-49
Degree $2$
Conductor $1170$
Sign $-1$
Analytic cond. $69.0322$
Root an. cond. $8.30856$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 4·4-s − 5·5-s − 13·7-s + 8·8-s − 10·10-s + 15·11-s + 13·13-s − 26·14-s + 16·16-s + 75·17-s − 130·19-s − 20·20-s + 30·22-s − 45·23-s + 25·25-s + 26·26-s − 52·28-s + 138·29-s − 34·31-s + 32·32-s + 150·34-s + 65·35-s − 379·37-s − 260·38-s − 40·40-s − 243·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.447·5-s − 0.701·7-s + 0.353·8-s − 0.316·10-s + 0.411·11-s + 0.277·13-s − 0.496·14-s + 1/4·16-s + 1.07·17-s − 1.56·19-s − 0.223·20-s + 0.290·22-s − 0.407·23-s + 1/5·25-s + 0.196·26-s − 0.350·28-s + 0.883·29-s − 0.196·31-s + 0.176·32-s + 0.756·34-s + 0.313·35-s − 1.68·37-s − 1.10·38-s − 0.158·40-s − 0.925·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1170\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 13\)
Sign: $-1$
Analytic conductor: \(69.0322\)
Root analytic conductor: \(8.30856\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1170,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p T \)
3 \( 1 \)
5 \( 1 + p T \)
13 \( 1 - p T \)
good7 \( 1 + 13 T + p^{3} T^{2} \)
11 \( 1 - 15 T + p^{3} T^{2} \)
17 \( 1 - 75 T + p^{3} T^{2} \)
19 \( 1 + 130 T + p^{3} T^{2} \)
23 \( 1 + 45 T + p^{3} T^{2} \)
29 \( 1 - 138 T + p^{3} T^{2} \)
31 \( 1 + 34 T + p^{3} T^{2} \)
37 \( 1 + 379 T + p^{3} T^{2} \)
41 \( 1 + 243 T + p^{3} T^{2} \)
43 \( 1 - 416 T + p^{3} T^{2} \)
47 \( 1 + 378 T + p^{3} T^{2} \)
53 \( 1 - 3 T + p^{3} T^{2} \)
59 \( 1 - 816 T + p^{3} T^{2} \)
61 \( 1 + 607 T + p^{3} T^{2} \)
67 \( 1 + 700 T + p^{3} T^{2} \)
71 \( 1 + 57 T + p^{3} T^{2} \)
73 \( 1 + 1162 T + p^{3} T^{2} \)
79 \( 1 + T + p^{3} T^{2} \)
83 \( 1 + 672 T + p^{3} T^{2} \)
89 \( 1 + 969 T + p^{3} T^{2} \)
97 \( 1 + 949 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.881747179531307960901790433017, −8.162637367752187941781066336655, −7.11220817825591783891104594162, −6.43195554483633943337836645558, −5.63942151657470634623985011471, −4.51203523263413404402633365729, −3.72025803666513258443009479409, −2.90046869167590825300862472619, −1.54295737085065862995283325377, 0, 1.54295737085065862995283325377, 2.90046869167590825300862472619, 3.72025803666513258443009479409, 4.51203523263413404402633365729, 5.63942151657470634623985011471, 6.43195554483633943337836645558, 7.11220817825591783891104594162, 8.162637367752187941781066336655, 8.881747179531307960901790433017

Graph of the $Z$-function along the critical line