Properties

Label 2-1170-1.1-c3-0-25
Degree $2$
Conductor $1170$
Sign $1$
Analytic cond. $69.0322$
Root an. cond. $8.30856$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 4·4-s + 5·5-s + 2·7-s + 8·8-s + 10·10-s + 13·13-s + 4·14-s + 16·16-s + 60·17-s + 50·19-s + 20·20-s − 210·23-s + 25·25-s + 26·26-s + 8·28-s + 228·29-s + 116·31-s + 32·32-s + 120·34-s + 10·35-s + 386·37-s + 100·38-s + 40·40-s − 378·41-s − 4·43-s − 420·46-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.447·5-s + 0.107·7-s + 0.353·8-s + 0.316·10-s + 0.277·13-s + 0.0763·14-s + 1/4·16-s + 0.856·17-s + 0.603·19-s + 0.223·20-s − 1.90·23-s + 1/5·25-s + 0.196·26-s + 0.0539·28-s + 1.45·29-s + 0.672·31-s + 0.176·32-s + 0.605·34-s + 0.0482·35-s + 1.71·37-s + 0.426·38-s + 0.158·40-s − 1.43·41-s − 0.0141·43-s − 1.34·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1170\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 13\)
Sign: $1$
Analytic conductor: \(69.0322\)
Root analytic conductor: \(8.30856\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1170,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(4.112104789\)
\(L(\frac12)\) \(\approx\) \(4.112104789\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p T \)
3 \( 1 \)
5 \( 1 - p T \)
13 \( 1 - p T \)
good7 \( 1 - 2 T + p^{3} T^{2} \)
11 \( 1 + p^{3} T^{2} \)
17 \( 1 - 60 T + p^{3} T^{2} \)
19 \( 1 - 50 T + p^{3} T^{2} \)
23 \( 1 + 210 T + p^{3} T^{2} \)
29 \( 1 - 228 T + p^{3} T^{2} \)
31 \( 1 - 116 T + p^{3} T^{2} \)
37 \( 1 - 386 T + p^{3} T^{2} \)
41 \( 1 + 378 T + p^{3} T^{2} \)
43 \( 1 + 4 T + p^{3} T^{2} \)
47 \( 1 - 312 T + p^{3} T^{2} \)
53 \( 1 - 198 T + p^{3} T^{2} \)
59 \( 1 + 624 T + p^{3} T^{2} \)
61 \( 1 - 638 T + p^{3} T^{2} \)
67 \( 1 - 200 T + p^{3} T^{2} \)
71 \( 1 - 408 T + p^{3} T^{2} \)
73 \( 1 - 1148 T + p^{3} T^{2} \)
79 \( 1 - 824 T + p^{3} T^{2} \)
83 \( 1 + 1332 T + p^{3} T^{2} \)
89 \( 1 + 54 T + p^{3} T^{2} \)
97 \( 1 + 244 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.710289586326277813332907918101, −8.370072939859242635598481966769, −7.80063865146715241808053472067, −6.64339872274938895980480050397, −5.99356670277130883636764689131, −5.16294208068740420466698992566, −4.21603112034952563277537868141, −3.21818765981776693881851225469, −2.18369675082769213176863765955, −0.983333561891427777611974246968, 0.983333561891427777611974246968, 2.18369675082769213176863765955, 3.21818765981776693881851225469, 4.21603112034952563277537868141, 5.16294208068740420466698992566, 5.99356670277130883636764689131, 6.64339872274938895980480050397, 7.80063865146715241808053472067, 8.370072939859242635598481966769, 9.710289586326277813332907918101

Graph of the $Z$-function along the critical line