L(s) = 1 | + (1.32 − 2.30i)2-s + (0.201 + 1.72i)3-s + (−2.52 − 4.37i)4-s + (0.324 − 0.561i)5-s + (4.22 + 1.82i)6-s + 1.54·7-s − 8.11·8-s + (−2.91 + 0.691i)9-s + (−0.861 − 1.49i)10-s + (−2.53 + 4.39i)11-s + (7.02 − 5.22i)12-s + (3.32 − 1.40i)13-s + (2.05 − 3.56i)14-s + (1.03 + 0.445i)15-s + (−5.72 + 9.91i)16-s + (−0.103 + 0.179i)17-s + ⋯ |
L(s) = 1 | + (0.939 − 1.62i)2-s + (0.116 + 0.993i)3-s + (−1.26 − 2.18i)4-s + (0.145 − 0.251i)5-s + (1.72 + 0.743i)6-s + 0.585·7-s − 2.86·8-s + (−0.973 + 0.230i)9-s + (−0.272 − 0.471i)10-s + (−0.764 + 1.32i)11-s + (2.02 − 1.50i)12-s + (0.921 − 0.389i)13-s + (0.549 − 0.951i)14-s + (0.266 + 0.114i)15-s + (−1.43 + 2.47i)16-s + (−0.0251 + 0.0436i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0280 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0280 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.11842 - 1.08751i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.11842 - 1.08751i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.201 - 1.72i)T \) |
| 13 | \( 1 + (-3.32 + 1.40i)T \) |
good | 2 | \( 1 + (-1.32 + 2.30i)T + (-1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (-0.324 + 0.561i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 - 1.54T + 7T^{2} \) |
| 11 | \( 1 + (2.53 - 4.39i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (0.103 - 0.179i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.79 - 3.10i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 3.20T + 23T^{2} \) |
| 29 | \( 1 + (-3.41 + 5.91i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-1.58 + 2.73i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (4.71 + 8.16i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 8.60T + 41T^{2} \) |
| 43 | \( 1 - 5.99T + 43T^{2} \) |
| 47 | \( 1 + (1.42 + 2.47i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 2.48T + 53T^{2} \) |
| 59 | \( 1 + (-1.49 - 2.58i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 - 8.04T + 61T^{2} \) |
| 67 | \( 1 - 4.94T + 67T^{2} \) |
| 71 | \( 1 + (0.787 - 1.36i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 3.03T + 73T^{2} \) |
| 79 | \( 1 + (-3.23 - 5.60i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-1.24 - 2.15i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (1.76 + 3.05i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 9.38T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.13594072719141450475431077035, −12.19424471245952644948036465365, −11.16294143883441086830335533061, −10.35665255240279072064807347076, −9.665474464738851343936271044029, −8.341102866017034186817793534464, −5.68459615276756710760194025168, −4.75096760735874456542952818664, −3.75646086930831426787544330085, −2.15410309416922616765033554958,
3.19395390622347273573586790810, 5.01364136792540437165862987184, 6.16933655185792366269961948530, 6.87907688002073586149240780167, 8.318148987874524287661727553113, 8.495181684505588240432383406914, 11.02678698773195248207453640202, 12.21650309266245923122898443106, 13.31872046759669026037036142786, 13.85307903606149962296757696358