L(s) = 1 | + 0.697·2-s + (−1.39 + 1.03i)3-s − 1.51·4-s + (1.44 + 2.50i)5-s + (−0.970 + 0.719i)6-s + (1.58 + 2.74i)7-s − 2.45·8-s + (0.874 − 2.86i)9-s + (1.00 + 1.74i)10-s + 2.31·11-s + (2.10 − 1.56i)12-s + (−3.15 − 1.74i)13-s + (1.10 + 1.91i)14-s + (−4.59 − 1.99i)15-s + 1.31·16-s + (2.69 − 4.66i)17-s + ⋯ |
L(s) = 1 | + 0.493·2-s + (−0.803 + 0.595i)3-s − 0.756·4-s + (0.646 + 1.11i)5-s + (−0.396 + 0.293i)6-s + (0.599 + 1.03i)7-s − 0.866·8-s + (0.291 − 0.956i)9-s + (0.318 + 0.552i)10-s + 0.697·11-s + (0.608 − 0.450i)12-s + (−0.874 − 0.484i)13-s + (0.295 + 0.512i)14-s + (−1.18 − 0.515i)15-s + 0.329·16-s + (0.653 − 1.13i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.183 - 0.982i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.183 - 0.982i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.761833 + 0.632551i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.761833 + 0.632551i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.39 - 1.03i)T \) |
| 13 | \( 1 + (3.15 + 1.74i)T \) |
good | 2 | \( 1 - 0.697T + 2T^{2} \) |
| 5 | \( 1 + (-1.44 - 2.50i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-1.58 - 2.74i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 - 2.31T + 11T^{2} \) |
| 17 | \( 1 + (-2.69 + 4.66i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (2.58 - 4.48i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.27 + 5.66i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 4.02T + 29T^{2} \) |
| 31 | \( 1 + (-4.23 - 7.34i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (2.42 + 4.19i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (1.25 - 2.17i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (2.99 + 5.18i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.521 + 0.902i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 1.29T + 53T^{2} \) |
| 59 | \( 1 + 4.70T + 59T^{2} \) |
| 61 | \( 1 + (3.71 + 6.44i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (4.18 - 7.24i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (0.680 - 1.17i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 1.41T + 73T^{2} \) |
| 79 | \( 1 + (0.0365 - 0.0633i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (1.08 - 1.88i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (0.0891 + 0.154i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (0.0654 + 0.113i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.19412466040001184220372859121, −12.42292090811082617369668295782, −11.94901442445934493715780979178, −10.54897938857139967504976339939, −9.769348286686852795793348180147, −8.652399579617752341143177961334, −6.69978673719845899743968349762, −5.63322339433502623327789631150, −4.74573954420172535843065412326, −3.00866071595926337730911290673,
1.24406550412890253253112861637, 4.37380276409098294513563061684, 5.07388655626070758045154180386, 6.33859682859897031095535936400, 7.80080826299422948798428169079, 9.066100829755404837312750539617, 10.16226927791258232991191218000, 11.56501531280469751945436860310, 12.49135812175612724781225974688, 13.33097424246279120825736836058