L(s) = 1 | + (0.242 − 0.905i)2-s + (−0.131 − 1.72i)3-s + (0.971 + 0.560i)4-s + (0.0271 − 0.101i)5-s + (−1.59 − 0.299i)6-s + (0.258 + 0.258i)7-s + (2.06 − 2.06i)8-s + (−2.96 + 0.455i)9-s + (−0.0852 − 0.0492i)10-s + (−3.07 − 0.824i)11-s + (0.840 − 1.75i)12-s + (−1.04 + 3.45i)13-s + (0.296 − 0.171i)14-s + (−0.178 − 0.0335i)15-s + (−0.249 − 0.432i)16-s + (0.713 + 1.23i)17-s + ⋯ |
L(s) = 1 | + (0.171 − 0.640i)2-s + (−0.0760 − 0.997i)3-s + (0.485 + 0.280i)4-s + (0.0121 − 0.0453i)5-s + (−0.651 − 0.122i)6-s + (0.0976 + 0.0976i)7-s + (0.731 − 0.731i)8-s + (−0.988 + 0.151i)9-s + (−0.0269 − 0.0155i)10-s + (−0.927 − 0.248i)11-s + (0.242 − 0.505i)12-s + (−0.289 + 0.957i)13-s + (0.0793 − 0.0457i)14-s + (−0.0461 − 0.00866i)15-s + (−0.0623 − 0.108i)16-s + (0.173 + 0.299i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.168 + 0.985i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.168 + 0.985i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.938166 - 0.791731i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.938166 - 0.791731i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.131 + 1.72i)T \) |
| 13 | \( 1 + (1.04 - 3.45i)T \) |
good | 2 | \( 1 + (-0.242 + 0.905i)T + (-1.73 - i)T^{2} \) |
| 5 | \( 1 + (-0.0271 + 0.101i)T + (-4.33 - 2.5i)T^{2} \) |
| 7 | \( 1 + (-0.258 - 0.258i)T + 7iT^{2} \) |
| 11 | \( 1 + (3.07 + 0.824i)T + (9.52 + 5.5i)T^{2} \) |
| 17 | \( 1 + (-0.713 - 1.23i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.92 - 0.784i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 - 3.67T + 23T^{2} \) |
| 29 | \( 1 + (4.47 - 2.58i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (5.46 + 1.46i)T + (26.8 + 15.5i)T^{2} \) |
| 37 | \( 1 + (4.32 - 1.15i)T + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + (4.81 + 4.81i)T + 41iT^{2} \) |
| 43 | \( 1 + 2.24iT - 43T^{2} \) |
| 47 | \( 1 + (1.18 + 4.42i)T + (-40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 - 13.0iT - 53T^{2} \) |
| 59 | \( 1 + (0.895 + 3.34i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + 6.24T + 61T^{2} \) |
| 67 | \( 1 + (-10.8 + 10.8i)T - 67iT^{2} \) |
| 71 | \( 1 + (1.56 - 5.85i)T + (-61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 + (4.13 + 4.13i)T + 73iT^{2} \) |
| 79 | \( 1 + (-8.15 + 14.1i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (16.0 - 4.29i)T + (71.8 - 41.5i)T^{2} \) |
| 89 | \( 1 + (0.630 + 2.35i)T + (-77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (8.74 - 8.74i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.04820790399069450679022547067, −12.30608738808915054475420588244, −11.41003789605453781631718989887, −10.58776052037416308045186008347, −8.962977732311185084143280708044, −7.62387594259986648069176291827, −6.86594775538008002798497336694, −5.31728767678406478891899167259, −3.26212923021402210847367376198, −1.84046907380049184830549429227,
2.92516376887372025462030309768, 4.90872170241101730754109889191, 5.60970129255875689673502736396, 7.14618261126607216154178189693, 8.235916541146867036787847226250, 9.731313443046683122832648514958, 10.62046369397901079674314732031, 11.38348961702003075780629520018, 12.85678593373932720338573930170, 14.17620917113977684199822711996