L(s) = 1 | − 1.24·3-s + (1.73 − 1.40i)5-s + (−1.01 − 1.01i)7-s − 1.44·9-s + (4.38 + 4.38i)11-s + (0.898 + 0.898i)13-s + (−2.16 + 1.75i)15-s + 1.76i·17-s + (−3.91 + 3.91i)19-s + (1.26 + 1.26i)21-s + (0.505 − 0.505i)23-s + (1.04 − 4.89i)25-s + 5.54·27-s + (5.04 − 1.88i)29-s + (4.04 + 4.04i)31-s + ⋯ |
L(s) = 1 | − 0.719·3-s + (0.777 − 0.629i)5-s + (−0.384 − 0.384i)7-s − 0.483·9-s + (1.32 + 1.32i)11-s + (0.249 + 0.249i)13-s + (−0.558 + 0.452i)15-s + 0.428i·17-s + (−0.898 + 0.898i)19-s + (0.276 + 0.276i)21-s + (0.105 − 0.105i)23-s + (0.208 − 0.978i)25-s + 1.06·27-s + (0.936 − 0.349i)29-s + (0.726 + 0.726i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.977 - 0.209i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.977 - 0.209i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.392075214\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.392075214\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-1.73 + 1.40i)T \) |
| 29 | \( 1 + (-5.04 + 1.88i)T \) |
good | 3 | \( 1 + 1.24T + 3T^{2} \) |
| 7 | \( 1 + (1.01 + 1.01i)T + 7iT^{2} \) |
| 11 | \( 1 + (-4.38 - 4.38i)T + 11iT^{2} \) |
| 13 | \( 1 + (-0.898 - 0.898i)T + 13iT^{2} \) |
| 17 | \( 1 - 1.76iT - 17T^{2} \) |
| 19 | \( 1 + (3.91 - 3.91i)T - 19iT^{2} \) |
| 23 | \( 1 + (-0.505 + 0.505i)T - 23iT^{2} \) |
| 31 | \( 1 + (-4.04 - 4.04i)T + 31iT^{2} \) |
| 37 | \( 1 - 1.45T + 37T^{2} \) |
| 41 | \( 1 + (-6.26 + 6.26i)T - 41iT^{2} \) |
| 43 | \( 1 + 7.71T + 43T^{2} \) |
| 47 | \( 1 - 6.29T + 47T^{2} \) |
| 53 | \( 1 + (-5.48 + 5.48i)T - 53iT^{2} \) |
| 59 | \( 1 - 14.6iT - 59T^{2} \) |
| 61 | \( 1 + (-5.27 - 5.27i)T + 61iT^{2} \) |
| 67 | \( 1 + (-4.62 + 4.62i)T - 67iT^{2} \) |
| 71 | \( 1 - 3.20iT - 71T^{2} \) |
| 73 | \( 1 - 4.68iT - 73T^{2} \) |
| 79 | \( 1 + (8.74 - 8.74i)T - 79iT^{2} \) |
| 83 | \( 1 + (-9.25 + 9.25i)T - 83iT^{2} \) |
| 89 | \( 1 + (3.02 - 3.02i)T - 89iT^{2} \) |
| 97 | \( 1 + 6.99T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.08945097344610677156213950631, −8.961310903160764620833587474057, −8.449216069974114404967169720186, −6.99903546971868079019456513891, −6.40787549139567097805602918217, −5.71587919668703171696378119693, −4.63985841755737195037960469231, −3.92654643307296935965775397038, −2.24672962564533748182676657821, −1.08755078181893692449392883362,
0.838355394918631697821555700779, 2.55345643466423836170762455255, 3.36884233362810596298514295001, 4.75120534071571687467021219624, 5.89137593484138453691220445799, 6.22980593443082743698699337234, 6.85892601507063259740998422459, 8.334274311817733508607302193697, 9.007297598051919512458776041467, 9.737119800954645052126653763282