Properties

Label 2-1160-1.1-c1-0-13
Degree $2$
Conductor $1160$
Sign $-1$
Analytic cond. $9.26264$
Root an. cond. $3.04345$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.90·3-s − 5-s − 1.52·7-s + 5.42·9-s + 0.903·11-s + 2.42·13-s + 2.90·15-s + 2.28·17-s − 0.474·19-s + 4.42·21-s − 2.90·23-s + 25-s − 7.05·27-s + 29-s + 5.33·31-s − 2.62·33-s + 1.52·35-s − 3.52·37-s − 7.05·39-s + 4.62·41-s − 12.7·43-s − 5.42·45-s − 1.65·47-s − 4.67·49-s − 6.62·51-s − 2.13·53-s − 0.903·55-s + ⋯
L(s)  = 1  − 1.67·3-s − 0.447·5-s − 0.576·7-s + 1.80·9-s + 0.272·11-s + 0.673·13-s + 0.749·15-s + 0.553·17-s − 0.108·19-s + 0.966·21-s − 0.605·23-s + 0.200·25-s − 1.35·27-s + 0.185·29-s + 0.957·31-s − 0.456·33-s + 0.257·35-s − 0.579·37-s − 1.12·39-s + 0.721·41-s − 1.93·43-s − 0.809·45-s − 0.241·47-s − 0.667·49-s − 0.927·51-s − 0.293·53-s − 0.121·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1160\)    =    \(2^{3} \cdot 5 \cdot 29\)
Sign: $-1$
Analytic conductor: \(9.26264\)
Root analytic conductor: \(3.04345\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1160,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
29 \( 1 - T \)
good3 \( 1 + 2.90T + 3T^{2} \)
7 \( 1 + 1.52T + 7T^{2} \)
11 \( 1 - 0.903T + 11T^{2} \)
13 \( 1 - 2.42T + 13T^{2} \)
17 \( 1 - 2.28T + 17T^{2} \)
19 \( 1 + 0.474T + 19T^{2} \)
23 \( 1 + 2.90T + 23T^{2} \)
31 \( 1 - 5.33T + 31T^{2} \)
37 \( 1 + 3.52T + 37T^{2} \)
41 \( 1 - 4.62T + 41T^{2} \)
43 \( 1 + 12.7T + 43T^{2} \)
47 \( 1 + 1.65T + 47T^{2} \)
53 \( 1 + 2.13T + 53T^{2} \)
59 \( 1 + 7.18T + 59T^{2} \)
61 \( 1 + 7.67T + 61T^{2} \)
67 \( 1 + 2.04T + 67T^{2} \)
71 \( 1 - 3.18T + 71T^{2} \)
73 \( 1 + 8.90T + 73T^{2} \)
79 \( 1 - 5.19T + 79T^{2} \)
83 \( 1 + 15.6T + 83T^{2} \)
89 \( 1 - 11.8T + 89T^{2} \)
97 \( 1 - 3.39T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.679442549492682241885612849173, −8.520639671294869211340759654291, −7.54798663079659319533512304545, −6.52323079437938361719919624975, −6.16983810774882504032387948551, −5.16991604627669649020987698237, −4.31193595951098153514019315954, −3.27566720763600159230373872435, −1.34860436452899189187683807873, 0, 1.34860436452899189187683807873, 3.27566720763600159230373872435, 4.31193595951098153514019315954, 5.16991604627669649020987698237, 6.16983810774882504032387948551, 6.52323079437938361719919624975, 7.54798663079659319533512304545, 8.520639671294869211340759654291, 9.679442549492682241885612849173

Graph of the $Z$-function along the critical line