L(s) = 1 | − 10.3i·5-s − 14.6·7-s + 5.65i·11-s + 17·25-s − 218. i·29-s − 338.·31-s + 152. i·35-s − 127·49-s + 509. i·53-s + 58.7·55-s + 554. i·59-s + 322·73-s − 83.1i·77-s + 308.·79-s + 1.22e3i·83-s + ⋯ |
L(s) = 1 | − 0.929i·5-s − 0.793·7-s + 0.155i·11-s + 0.136·25-s − 1.39i·29-s − 1.95·31-s + 0.737i·35-s − 0.370·49-s + 1.31i·53-s + 0.144·55-s + 1.22i·59-s + 0.516·73-s − 0.123i·77-s + 0.439·79-s + 1.62i·83-s + ⋯ |
Λ(s)=(=(1152s/2ΓC(s)L(s)−iΛ(4−s)
Λ(s)=(=(1152s/2ΓC(s+3/2)L(s)−iΛ(1−s)
Degree: |
2 |
Conductor: |
1152
= 27⋅32
|
Sign: |
−i
|
Analytic conductor: |
67.9702 |
Root analytic conductor: |
8.24440 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1152(577,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1152, ( :3/2), −i)
|
Particular Values
L(2) |
≈ |
0.6864387752 |
L(21) |
≈ |
0.6864387752 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1+10.3iT−125T2 |
| 7 | 1+14.6T+343T2 |
| 11 | 1−5.65iT−1.33e3T2 |
| 13 | 1−2.19e3T2 |
| 17 | 1+4.91e3T2 |
| 19 | 1−6.85e3T2 |
| 23 | 1+1.21e4T2 |
| 29 | 1+218.iT−2.43e4T2 |
| 31 | 1+338.T+2.97e4T2 |
| 37 | 1−5.06e4T2 |
| 41 | 1+6.89e4T2 |
| 43 | 1−7.95e4T2 |
| 47 | 1+1.03e5T2 |
| 53 | 1−509.iT−1.48e5T2 |
| 59 | 1−554.iT−2.05e5T2 |
| 61 | 1−2.26e5T2 |
| 67 | 1−3.00e5T2 |
| 71 | 1+3.57e5T2 |
| 73 | 1−322T+3.89e5T2 |
| 79 | 1−308.T+4.93e5T2 |
| 83 | 1−1.22e3iT−5.71e5T2 |
| 89 | 1+7.04e5T2 |
| 97 | 1+574T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.441693097634920580878082873735, −8.994071311433229844906527274484, −8.024461881209783311379158359721, −7.18188474678392013337117004315, −6.19473252602108113973153109669, −5.39774657732659590211850382896, −4.43200511806724335986078499005, −3.52243760349827180664154857187, −2.28398610328640160690189559074, −0.982462127589477152619674389567,
0.18634918642795975289557131741, 1.84192360072070073976371195044, 3.08922685911511800726255743696, 3.61358475823917058532946860367, 4.99262636771099118916621861472, 5.96649615572181673186670565505, 6.81474034523309764541307555146, 7.31278632568474624046090893972, 8.458493780205957967859883984360, 9.304285163120311695607075791229