Properties

Label 2-1152-8.5-c3-0-39
Degree 22
Conductor 11521152
Sign 0.707+0.707i0.707 + 0.707i
Analytic cond. 67.970267.9702
Root an. cond. 8.244408.24440
Motivic weight 33
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8i·5-s + 12·7-s + 12i·11-s − 20i·13-s − 62·17-s − 108i·19-s + 72·23-s + 61·25-s − 128i·29-s − 204·31-s + 96i·35-s − 228i·37-s + 22·41-s − 204i·43-s + 600·47-s + ⋯
L(s)  = 1  + 0.715i·5-s + 0.647·7-s + 0.328i·11-s − 0.426i·13-s − 0.884·17-s − 1.30i·19-s + 0.652·23-s + 0.487·25-s − 0.819i·29-s − 1.18·31-s + 0.463i·35-s − 1.01i·37-s + 0.0838·41-s − 0.723i·43-s + 1.86·47-s + ⋯

Functional equation

Λ(s)=(1152s/2ΓC(s)L(s)=((0.707+0.707i)Λ(4s)\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(4-s) \end{aligned}
Λ(s)=(1152s/2ΓC(s+3/2)L(s)=((0.707+0.707i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 11521152    =    27322^{7} \cdot 3^{2}
Sign: 0.707+0.707i0.707 + 0.707i
Analytic conductor: 67.970267.9702
Root analytic conductor: 8.244408.24440
Motivic weight: 33
Rational: no
Arithmetic: yes
Character: χ1152(577,)\chi_{1152} (577, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 1152, ( :3/2), 0.707+0.707i)(2,\ 1152,\ (\ :3/2),\ 0.707 + 0.707i)

Particular Values

L(2)L(2) \approx 1.8998801691.899880169
L(12)L(\frac12) \approx 1.8998801691.899880169
L(52)L(\frac{5}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
good5 18iT125T2 1 - 8iT - 125T^{2}
7 112T+343T2 1 - 12T + 343T^{2}
11 112iT1.33e3T2 1 - 12iT - 1.33e3T^{2}
13 1+20iT2.19e3T2 1 + 20iT - 2.19e3T^{2}
17 1+62T+4.91e3T2 1 + 62T + 4.91e3T^{2}
19 1+108iT6.85e3T2 1 + 108iT - 6.85e3T^{2}
23 172T+1.21e4T2 1 - 72T + 1.21e4T^{2}
29 1+128iT2.43e4T2 1 + 128iT - 2.43e4T^{2}
31 1+204T+2.97e4T2 1 + 204T + 2.97e4T^{2}
37 1+228iT5.06e4T2 1 + 228iT - 5.06e4T^{2}
41 122T+6.89e4T2 1 - 22T + 6.89e4T^{2}
43 1+204iT7.95e4T2 1 + 204iT - 7.95e4T^{2}
47 1600T+1.03e5T2 1 - 600T + 1.03e5T^{2}
53 1+256iT1.48e5T2 1 + 256iT - 1.48e5T^{2}
59 1828iT2.05e5T2 1 - 828iT - 2.05e5T^{2}
61 184iT2.26e5T2 1 - 84iT - 2.26e5T^{2}
67 1+348iT3.00e5T2 1 + 348iT - 3.00e5T^{2}
71 1+456T+3.57e5T2 1 + 456T + 3.57e5T^{2}
73 1822T+3.89e5T2 1 - 822T + 3.89e5T^{2}
79 1+1.35e3T+4.93e5T2 1 + 1.35e3T + 4.93e5T^{2}
83 1108iT5.71e5T2 1 - 108iT - 5.71e5T^{2}
89 1938T+7.04e5T2 1 - 938T + 7.04e5T^{2}
97 11.27e3T+9.12e5T2 1 - 1.27e3T + 9.12e5T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.177252523231468203718978657844, −8.641500388361952812324821211185, −7.38924875861704834676787760309, −7.07983997740716503887772709393, −5.95209827040311355225035888439, −4.99247061086554422537695258635, −4.12470892235785676545173370293, −2.89272935143573295511514797278, −2.04221940129302325136765615199, −0.51368626996470401308829487096, 1.03611510174584248445418526789, 1.97665524371833984611449933188, 3.38408538893782738089383259557, 4.45938509546728866066680399989, 5.14167766176179896237156440009, 6.10023390584808819485700224791, 7.09177982770107387331283098528, 8.011356051206735430009355390670, 8.756373790842805118871184503942, 9.289478690928624504344663680716

Graph of the ZZ-function along the critical line