Properties

Label 2-1152-8.5-c3-0-39
Degree $2$
Conductor $1152$
Sign $0.707 + 0.707i$
Analytic cond. $67.9702$
Root an. cond. $8.24440$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8i·5-s + 12·7-s + 12i·11-s − 20i·13-s − 62·17-s − 108i·19-s + 72·23-s + 61·25-s − 128i·29-s − 204·31-s + 96i·35-s − 228i·37-s + 22·41-s − 204i·43-s + 600·47-s + ⋯
L(s)  = 1  + 0.715i·5-s + 0.647·7-s + 0.328i·11-s − 0.426i·13-s − 0.884·17-s − 1.30i·19-s + 0.652·23-s + 0.487·25-s − 0.819i·29-s − 1.18·31-s + 0.463i·35-s − 1.01i·37-s + 0.0838·41-s − 0.723i·43-s + 1.86·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1152\)    =    \(2^{7} \cdot 3^{2}\)
Sign: $0.707 + 0.707i$
Analytic conductor: \(67.9702\)
Root analytic conductor: \(8.24440\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{1152} (577, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1152,\ (\ :3/2),\ 0.707 + 0.707i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.899880169\)
\(L(\frac12)\) \(\approx\) \(1.899880169\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 8iT - 125T^{2} \)
7 \( 1 - 12T + 343T^{2} \)
11 \( 1 - 12iT - 1.33e3T^{2} \)
13 \( 1 + 20iT - 2.19e3T^{2} \)
17 \( 1 + 62T + 4.91e3T^{2} \)
19 \( 1 + 108iT - 6.85e3T^{2} \)
23 \( 1 - 72T + 1.21e4T^{2} \)
29 \( 1 + 128iT - 2.43e4T^{2} \)
31 \( 1 + 204T + 2.97e4T^{2} \)
37 \( 1 + 228iT - 5.06e4T^{2} \)
41 \( 1 - 22T + 6.89e4T^{2} \)
43 \( 1 + 204iT - 7.95e4T^{2} \)
47 \( 1 - 600T + 1.03e5T^{2} \)
53 \( 1 + 256iT - 1.48e5T^{2} \)
59 \( 1 - 828iT - 2.05e5T^{2} \)
61 \( 1 - 84iT - 2.26e5T^{2} \)
67 \( 1 + 348iT - 3.00e5T^{2} \)
71 \( 1 + 456T + 3.57e5T^{2} \)
73 \( 1 - 822T + 3.89e5T^{2} \)
79 \( 1 + 1.35e3T + 4.93e5T^{2} \)
83 \( 1 - 108iT - 5.71e5T^{2} \)
89 \( 1 - 938T + 7.04e5T^{2} \)
97 \( 1 - 1.27e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.177252523231468203718978657844, −8.641500388361952812324821211185, −7.38924875861704834676787760309, −7.07983997740716503887772709393, −5.95209827040311355225035888439, −4.99247061086554422537695258635, −4.12470892235785676545173370293, −2.89272935143573295511514797278, −2.04221940129302325136765615199, −0.51368626996470401308829487096, 1.03611510174584248445418526789, 1.97665524371833984611449933188, 3.38408538893782738089383259557, 4.45938509546728866066680399989, 5.14167766176179896237156440009, 6.10023390584808819485700224791, 7.09177982770107387331283098528, 8.011356051206735430009355390670, 8.756373790842805118871184503942, 9.289478690928624504344663680716

Graph of the $Z$-function along the critical line