L(s) = 1 | + 8i·5-s + 12·7-s + 12i·11-s − 20i·13-s − 62·17-s − 108i·19-s + 72·23-s + 61·25-s − 128i·29-s − 204·31-s + 96i·35-s − 228i·37-s + 22·41-s − 204i·43-s + 600·47-s + ⋯ |
L(s) = 1 | + 0.715i·5-s + 0.647·7-s + 0.328i·11-s − 0.426i·13-s − 0.884·17-s − 1.30i·19-s + 0.652·23-s + 0.487·25-s − 0.819i·29-s − 1.18·31-s + 0.463i·35-s − 1.01i·37-s + 0.0838·41-s − 0.723i·43-s + 1.86·47-s + ⋯ |
Λ(s)=(=(1152s/2ΓC(s)L(s)(0.707+0.707i)Λ(4−s)
Λ(s)=(=(1152s/2ΓC(s+3/2)L(s)(0.707+0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
1152
= 27⋅32
|
Sign: |
0.707+0.707i
|
Analytic conductor: |
67.9702 |
Root analytic conductor: |
8.24440 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1152(577,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1152, ( :3/2), 0.707+0.707i)
|
Particular Values
L(2) |
≈ |
1.899880169 |
L(21) |
≈ |
1.899880169 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1−8iT−125T2 |
| 7 | 1−12T+343T2 |
| 11 | 1−12iT−1.33e3T2 |
| 13 | 1+20iT−2.19e3T2 |
| 17 | 1+62T+4.91e3T2 |
| 19 | 1+108iT−6.85e3T2 |
| 23 | 1−72T+1.21e4T2 |
| 29 | 1+128iT−2.43e4T2 |
| 31 | 1+204T+2.97e4T2 |
| 37 | 1+228iT−5.06e4T2 |
| 41 | 1−22T+6.89e4T2 |
| 43 | 1+204iT−7.95e4T2 |
| 47 | 1−600T+1.03e5T2 |
| 53 | 1+256iT−1.48e5T2 |
| 59 | 1−828iT−2.05e5T2 |
| 61 | 1−84iT−2.26e5T2 |
| 67 | 1+348iT−3.00e5T2 |
| 71 | 1+456T+3.57e5T2 |
| 73 | 1−822T+3.89e5T2 |
| 79 | 1+1.35e3T+4.93e5T2 |
| 83 | 1−108iT−5.71e5T2 |
| 89 | 1−938T+7.04e5T2 |
| 97 | 1−1.27e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.177252523231468203718978657844, −8.641500388361952812324821211185, −7.38924875861704834676787760309, −7.07983997740716503887772709393, −5.95209827040311355225035888439, −4.99247061086554422537695258635, −4.12470892235785676545173370293, −2.89272935143573295511514797278, −2.04221940129302325136765615199, −0.51368626996470401308829487096,
1.03611510174584248445418526789, 1.97665524371833984611449933188, 3.38408538893782738089383259557, 4.45938509546728866066680399989, 5.14167766176179896237156440009, 6.10023390584808819485700224791, 7.09177982770107387331283098528, 8.011356051206735430009355390670, 8.756373790842805118871184503942, 9.289478690928624504344663680716