L(s) = 1 | − 3.41i·5-s + 4.82i·7-s − 2.82·11-s + 2.82·13-s + 5.41i·17-s + 5.65i·19-s + 1.17·23-s − 6.65·25-s − 0.585i·29-s − 3.17i·31-s + 16.4·35-s + 3.65·37-s + 2.58i·41-s + 9.65i·43-s + 12.4·47-s + ⋯ |
L(s) = 1 | − 1.52i·5-s + 1.82i·7-s − 0.852·11-s + 0.784·13-s + 1.31i·17-s + 1.29i·19-s + 0.244·23-s − 1.33·25-s − 0.108i·29-s − 0.569i·31-s + 2.78·35-s + 0.601·37-s + 0.403i·41-s + 1.47i·43-s + 1.82·47-s + ⋯ |
Λ(s)=(=(1152s/2ΓC(s)L(s)(0.577−0.816i)Λ(2−s)
Λ(s)=(=(1152s/2ΓC(s+1/2)L(s)(0.577−0.816i)Λ(1−s)
Degree: |
2 |
Conductor: |
1152
= 27⋅32
|
Sign: |
0.577−0.816i
|
Analytic conductor: |
9.19876 |
Root analytic conductor: |
3.03294 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1152(1151,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1152, ( :1/2), 0.577−0.816i)
|
Particular Values
L(1) |
≈ |
1.394543776 |
L(21) |
≈ |
1.394543776 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1+3.41iT−5T2 |
| 7 | 1−4.82iT−7T2 |
| 11 | 1+2.82T+11T2 |
| 13 | 1−2.82T+13T2 |
| 17 | 1−5.41iT−17T2 |
| 19 | 1−5.65iT−19T2 |
| 23 | 1−1.17T+23T2 |
| 29 | 1+0.585iT−29T2 |
| 31 | 1+3.17iT−31T2 |
| 37 | 1−3.65T+37T2 |
| 41 | 1−2.58iT−41T2 |
| 43 | 1−9.65iT−43T2 |
| 47 | 1−12.4T+47T2 |
| 53 | 1−5.07iT−53T2 |
| 59 | 1−2.34T+59T2 |
| 61 | 1−7.65T+61T2 |
| 67 | 1+12iT−67T2 |
| 71 | 1+4.48T+71T2 |
| 73 | 1−4T+73T2 |
| 79 | 1−6.48iT−79T2 |
| 83 | 1+5.17T+83T2 |
| 89 | 1−12.2iT−89T2 |
| 97 | 1−13.6T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.659782263365283782899747319839, −9.006824808807019217940217507063, −8.265305353930769001933405575848, −7.989776243437302024940850642402, −6.07729898028013508789540023631, −5.77471564526972110438194069593, −4.92732105823723651188326058489, −3.87139355916767467356030409684, −2.46970747226928753047365743098, −1.38847680784358031150558796350,
0.64734792517724004595993496822, 2.53141991830990794282502796096, 3.36945640649224550823612231383, 4.29028695802397280129765324100, 5.42205513459670754041838068018, 6.76024066656569152880103174150, 7.07957111567331679685021720726, 7.67198198379906614342749987224, 8.890880769226326988577320052968, 10.01331724837133053638583730926