L(s) = 1 | − 3.41i·5-s + 4.82i·7-s − 2.82·11-s + 2.82·13-s + 5.41i·17-s + 5.65i·19-s + 1.17·23-s − 6.65·25-s − 0.585i·29-s − 3.17i·31-s + 16.4·35-s + 3.65·37-s + 2.58i·41-s + 9.65i·43-s + 12.4·47-s + ⋯ |
L(s) = 1 | − 1.52i·5-s + 1.82i·7-s − 0.852·11-s + 0.784·13-s + 1.31i·17-s + 1.29i·19-s + 0.244·23-s − 1.33·25-s − 0.108i·29-s − 0.569i·31-s + 2.78·35-s + 0.601·37-s + 0.403i·41-s + 1.47i·43-s + 1.82·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.577 - 0.816i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.577 - 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.394543776\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.394543776\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + 3.41iT - 5T^{2} \) |
| 7 | \( 1 - 4.82iT - 7T^{2} \) |
| 11 | \( 1 + 2.82T + 11T^{2} \) |
| 13 | \( 1 - 2.82T + 13T^{2} \) |
| 17 | \( 1 - 5.41iT - 17T^{2} \) |
| 19 | \( 1 - 5.65iT - 19T^{2} \) |
| 23 | \( 1 - 1.17T + 23T^{2} \) |
| 29 | \( 1 + 0.585iT - 29T^{2} \) |
| 31 | \( 1 + 3.17iT - 31T^{2} \) |
| 37 | \( 1 - 3.65T + 37T^{2} \) |
| 41 | \( 1 - 2.58iT - 41T^{2} \) |
| 43 | \( 1 - 9.65iT - 43T^{2} \) |
| 47 | \( 1 - 12.4T + 47T^{2} \) |
| 53 | \( 1 - 5.07iT - 53T^{2} \) |
| 59 | \( 1 - 2.34T + 59T^{2} \) |
| 61 | \( 1 - 7.65T + 61T^{2} \) |
| 67 | \( 1 + 12iT - 67T^{2} \) |
| 71 | \( 1 + 4.48T + 71T^{2} \) |
| 73 | \( 1 - 4T + 73T^{2} \) |
| 79 | \( 1 - 6.48iT - 79T^{2} \) |
| 83 | \( 1 + 5.17T + 83T^{2} \) |
| 89 | \( 1 - 12.2iT - 89T^{2} \) |
| 97 | \( 1 - 13.6T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.659782263365283782899747319839, −9.006824808807019217940217507063, −8.265305353930769001933405575848, −7.989776243437302024940850642402, −6.07729898028013508789540023631, −5.77471564526972110438194069593, −4.92732105823723651188326058489, −3.87139355916767467356030409684, −2.46970747226928753047365743098, −1.38847680784358031150558796350,
0.64734792517724004595993496822, 2.53141991830990794282502796096, 3.36945640649224550823612231383, 4.29028695802397280129765324100, 5.42205513459670754041838068018, 6.76024066656569152880103174150, 7.07957111567331679685021720726, 7.67198198379906614342749987224, 8.890880769226326988577320052968, 10.01331724837133053638583730926