Properties

Label 2-1152-1.1-c1-0-10
Degree $2$
Conductor $1152$
Sign $1$
Analytic cond. $9.19876$
Root an. cond. $3.03294$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 4·5-s + 2·7-s − 4·11-s + 2·13-s + 2·17-s + 8·19-s − 4·23-s + 11·25-s − 6·31-s + 8·35-s − 2·37-s − 6·41-s − 4·47-s − 3·49-s − 16·55-s + 4·59-s + 14·61-s + 8·65-s + 4·67-s − 12·71-s − 10·73-s − 8·77-s + 10·79-s + 12·83-s + 8·85-s + 14·89-s + 4·91-s + ⋯
L(s)  = 1  + 1.78·5-s + 0.755·7-s − 1.20·11-s + 0.554·13-s + 0.485·17-s + 1.83·19-s − 0.834·23-s + 11/5·25-s − 1.07·31-s + 1.35·35-s − 0.328·37-s − 0.937·41-s − 0.583·47-s − 3/7·49-s − 2.15·55-s + 0.520·59-s + 1.79·61-s + 0.992·65-s + 0.488·67-s − 1.42·71-s − 1.17·73-s − 0.911·77-s + 1.12·79-s + 1.31·83-s + 0.867·85-s + 1.48·89-s + 0.419·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1152\)    =    \(2^{7} \cdot 3^{2}\)
Sign: $1$
Analytic conductor: \(9.19876\)
Root analytic conductor: \(3.03294\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{1152} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1152,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.423198115\)
\(L(\frac12)\) \(\approx\) \(2.423198115\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 4 T + p T^{2} \)
7 \( 1 - 2 T + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 - 8 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 + 6 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 + p T^{2} \)
47 \( 1 + 4 T + p T^{2} \)
53 \( 1 + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 - 14 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + 12 T + p T^{2} \)
73 \( 1 + 10 T + p T^{2} \)
79 \( 1 - 10 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 - 14 T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.919298927290302214129778093125, −9.107853987616391133573404036455, −8.172979318844237129173419438270, −7.37312552233206901012858237940, −6.26188690510143013986588806130, −5.33300428621827304415252516413, −5.15630977188877186851978464565, −3.41295449066880137345891491973, −2.28349914492601444414342737921, −1.36625703357770376353073884127, 1.36625703357770376353073884127, 2.28349914492601444414342737921, 3.41295449066880137345891491973, 5.15630977188877186851978464565, 5.33300428621827304415252516413, 6.26188690510143013986588806130, 7.37312552233206901012858237940, 8.172979318844237129173419438270, 9.107853987616391133573404036455, 9.919298927290302214129778093125

Graph of the $Z$-function along the critical line