L(s) = 1 | + (0.857 − 1.87i)2-s + (−4.53 − 1.33i)3-s + (2.44 + 2.82i)4-s + (4.20 − 2.70i)5-s + (−6.38 + 7.37i)6-s + (1.83 − 12.7i)7-s + (23.2 − 6.82i)8-s + (−3.92 − 2.51i)9-s + (−1.46 − 10.2i)10-s + (−0.872 − 1.91i)11-s + (−7.34 − 16.0i)12-s + (−8.93 − 62.1i)13-s + (−22.4 − 14.4i)14-s + (−22.6 + 6.65i)15-s + (2.86 − 19.8i)16-s + (11.3 − 13.1i)17-s + ⋯ |
L(s) = 1 | + (0.303 − 0.663i)2-s + (−0.872 − 0.256i)3-s + (0.306 + 0.353i)4-s + (0.376 − 0.241i)5-s + (−0.434 + 0.501i)6-s + (0.0993 − 0.690i)7-s + (1.02 − 0.301i)8-s + (−0.145 − 0.0933i)9-s + (−0.0464 − 0.323i)10-s + (−0.0239 − 0.0523i)11-s + (−0.176 − 0.386i)12-s + (−0.190 − 1.32i)13-s + (−0.428 − 0.275i)14-s + (−0.390 + 0.114i)15-s + (0.0446 − 0.310i)16-s + (0.162 − 0.187i)17-s + ⋯ |
Λ(s)=(=(115s/2ΓC(s)L(s)(−0.459+0.888i)Λ(4−s)
Λ(s)=(=(115s/2ΓC(s+3/2)L(s)(−0.459+0.888i)Λ(1−s)
Degree: |
2 |
Conductor: |
115
= 5⋅23
|
Sign: |
−0.459+0.888i
|
Analytic conductor: |
6.78521 |
Root analytic conductor: |
2.60484 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ115(6,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 115, ( :3/2), −0.459+0.888i)
|
Particular Values
L(2) |
≈ |
0.786705−1.29286i |
L(21) |
≈ |
0.786705−1.29286i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−4.20+2.70i)T |
| 23 | 1+(65.8+88.4i)T |
good | 2 | 1+(−0.857+1.87i)T+(−5.23−6.04i)T2 |
| 3 | 1+(4.53+1.33i)T+(22.7+14.5i)T2 |
| 7 | 1+(−1.83+12.7i)T+(−329.−96.6i)T2 |
| 11 | 1+(0.872+1.91i)T+(−871.+1.00e3i)T2 |
| 13 | 1+(8.93+62.1i)T+(−2.10e3+618.i)T2 |
| 17 | 1+(−11.3+13.1i)T+(−699.−4.86e3i)T2 |
| 19 | 1+(38.9+44.9i)T+(−976.+6.78e3i)T2 |
| 29 | 1+(−5.07+5.85i)T+(−3.47e3−2.41e4i)T2 |
| 31 | 1+(−12.9+3.80i)T+(2.50e4−1.61e4i)T2 |
| 37 | 1+(−311.−199.i)T+(2.10e4+4.60e4i)T2 |
| 41 | 1+(−33.4+21.4i)T+(2.86e4−6.26e4i)T2 |
| 43 | 1+(−213.−62.6i)T+(6.68e4+4.29e4i)T2 |
| 47 | 1+85.8T+1.03e5T2 |
| 53 | 1+(−64.1+446.i)T+(−1.42e5−4.19e4i)T2 |
| 59 | 1+(−31.7−220.i)T+(−1.97e5+5.78e4i)T2 |
| 61 | 1+(405.−119.i)T+(1.90e5−1.22e5i)T2 |
| 67 | 1+(291.−639.i)T+(−1.96e5−2.27e5i)T2 |
| 71 | 1+(416.−912.i)T+(−2.34e5−2.70e5i)T2 |
| 73 | 1+(−328.−378.i)T+(−5.53e4+3.85e5i)T2 |
| 79 | 1+(−87.5−609.i)T+(−4.73e5+1.38e5i)T2 |
| 83 | 1+(859.+552.i)T+(2.37e5+5.20e5i)T2 |
| 89 | 1+(21.6+6.34i)T+(5.93e5+3.81e5i)T2 |
| 97 | 1+(−1.34e3+861.i)T+(3.79e5−8.30e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.68664436214891286589329215043, −11.73751036006451597848404885361, −10.85492177958315826558287326958, −10.07189869849107678466996453366, −8.280902612785023796776009618417, −7.07503898370274861905037227549, −5.84225181351286041536290272412, −4.44872545986565506922947571246, −2.79507685397497764525654113303, −0.835283235978681396396039980696,
2.04212560835106277607613261806, 4.54917602759371861178123682420, 5.75307528758562650194636613242, 6.29195164291043475728720090994, 7.67078561895492100186351908245, 9.256734621639999220820002253744, 10.46600160554191048727852670362, 11.32592290414641121413228550954, 12.20363278908258299208735129835, 13.76336875756165538654308603507