L(s) = 1 | + (0.784 + 0.905i)2-s + (6.23 + 4.00i)3-s + (0.934 − 6.49i)4-s + (2.07 − 4.54i)5-s + (1.26 + 8.79i)6-s + (8.12 + 2.38i)7-s + (14.6 − 9.43i)8-s + (11.6 + 25.4i)9-s + (5.75 − 1.68i)10-s + (13.9 − 16.1i)11-s + (31.8 − 36.7i)12-s + (−12.7 + 3.74i)13-s + (4.21 + 9.23i)14-s + (31.1 − 20.0i)15-s + (−30.3 − 8.89i)16-s + (3.21 + 22.3i)17-s + ⋯ |
L(s) = 1 | + (0.277 + 0.320i)2-s + (1.20 + 0.771i)3-s + (0.116 − 0.812i)4-s + (0.185 − 0.406i)5-s + (0.0860 + 0.598i)6-s + (0.438 + 0.128i)7-s + (0.649 − 0.417i)8-s + (0.430 + 0.941i)9-s + (0.181 − 0.0533i)10-s + (0.382 − 0.441i)11-s + (0.766 − 0.884i)12-s + (−0.272 + 0.0799i)13-s + (0.0805 + 0.176i)14-s + (0.536 − 0.344i)15-s + (−0.473 − 0.139i)16-s + (0.0458 + 0.318i)17-s + ⋯ |
Λ(s)=(=(115s/2ΓC(s)L(s)(0.952−0.304i)Λ(4−s)
Λ(s)=(=(115s/2ΓC(s+3/2)L(s)(0.952−0.304i)Λ(1−s)
Degree: |
2 |
Conductor: |
115
= 5⋅23
|
Sign: |
0.952−0.304i
|
Analytic conductor: |
6.78521 |
Root analytic conductor: |
2.60484 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ115(36,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 115, ( :3/2), 0.952−0.304i)
|
Particular Values
L(2) |
≈ |
2.84234+0.443475i |
L(21) |
≈ |
2.84234+0.443475i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−2.07+4.54i)T |
| 23 | 1+(109.+14.3i)T |
good | 2 | 1+(−0.784−0.905i)T+(−1.13+7.91i)T2 |
| 3 | 1+(−6.23−4.00i)T+(11.2+24.5i)T2 |
| 7 | 1+(−8.12−2.38i)T+(288.+185.i)T2 |
| 11 | 1+(−13.9+16.1i)T+(−189.−1.31e3i)T2 |
| 13 | 1+(12.7−3.74i)T+(1.84e3−1.18e3i)T2 |
| 17 | 1+(−3.21−22.3i)T+(−4.71e3+1.38e3i)T2 |
| 19 | 1+(16.8−117.i)T+(−6.58e3−1.93e3i)T2 |
| 29 | 1+(−39.3−273.i)T+(−2.34e4+6.87e3i)T2 |
| 31 | 1+(−53.4+34.3i)T+(1.23e4−2.70e4i)T2 |
| 37 | 1+(81.0+177.i)T+(−3.31e4+3.82e4i)T2 |
| 41 | 1+(−11.4+25.1i)T+(−4.51e4−5.20e4i)T2 |
| 43 | 1+(−24.8−15.9i)T+(3.30e4+7.23e4i)T2 |
| 47 | 1+313.T+1.03e5T2 |
| 53 | 1+(−22.8−6.70i)T+(1.25e5+8.04e4i)T2 |
| 59 | 1+(630.−185.i)T+(1.72e5−1.11e5i)T2 |
| 61 | 1+(−379.+243.i)T+(9.42e4−2.06e5i)T2 |
| 67 | 1+(−187.−216.i)T+(−4.28e4+2.97e5i)T2 |
| 71 | 1+(462.+533.i)T+(−5.09e4+3.54e5i)T2 |
| 73 | 1+(−112.+784.i)T+(−3.73e5−1.09e5i)T2 |
| 79 | 1+(−254.+74.7i)T+(4.14e5−2.66e5i)T2 |
| 83 | 1+(−167.−365.i)T+(−3.74e5+4.32e5i)T2 |
| 89 | 1+(−1.26e3−815.i)T+(2.92e5+6.41e5i)T2 |
| 97 | 1+(136.−299.i)T+(−5.97e5−6.89e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.64050676075465831173950061772, −12.23717532257592046267448630128, −10.70674973102399314484124540965, −9.854527789619740706090083119555, −8.904680503401845024876378781599, −7.918078682602477205144535858419, −6.21181770312597080269128240910, −4.93977740622743804564781407982, −3.72109179904234241957900614886, −1.79135031696026705708514633735,
2.01562685224140303758394294204, 2.99899630230164391867461941914, 4.47241533386485960897914041420, 6.73859472670700056215255429899, 7.66184243752908981877913445407, 8.449894525182871111440121940118, 9.711437092084506643121389817959, 11.25870616240833839353635000844, 12.15413476319451951064088255185, 13.25791919891705288978421778582