Properties

Label 2-115-115.108-c2-0-12
Degree $2$
Conductor $115$
Sign $0.499 + 0.866i$
Analytic cond. $3.13352$
Root an. cond. $1.77017$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.184 − 2.58i)2-s + (4.62 + 1.00i)3-s + (−2.68 + 0.386i)4-s + (0.815 + 4.93i)5-s + (1.74 − 12.1i)6-s + (0.277 − 0.508i)7-s + (−0.707 − 3.25i)8-s + (12.1 + 5.56i)9-s + (12.6 − 3.01i)10-s + (1.72 + 1.99i)11-s + (−12.8 − 0.916i)12-s + (−3.62 − 6.62i)13-s + (−1.36 − 0.623i)14-s + (−1.19 + 23.6i)15-s + (−18.6 + 5.49i)16-s + (−1.02 − 1.37i)17-s + ⋯
L(s)  = 1  + (−0.0924 − 1.29i)2-s + (1.54 + 0.335i)3-s + (−0.671 + 0.0965i)4-s + (0.163 + 0.986i)5-s + (0.290 − 2.02i)6-s + (0.0396 − 0.0726i)7-s + (−0.0884 − 0.406i)8-s + (1.35 + 0.618i)9-s + (1.26 − 0.301i)10-s + (0.157 + 0.181i)11-s + (−1.06 − 0.0763i)12-s + (−0.278 − 0.509i)13-s + (−0.0975 − 0.0445i)14-s + (−0.0795 + 1.57i)15-s + (−1.16 + 0.343i)16-s + (−0.0604 − 0.0807i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.499 + 0.866i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.499 + 0.866i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(115\)    =    \(5 \cdot 23\)
Sign: $0.499 + 0.866i$
Analytic conductor: \(3.13352\)
Root analytic conductor: \(1.77017\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{115} (108, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 115,\ (\ :1),\ 0.499 + 0.866i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.80004 - 1.04036i\)
\(L(\frac12)\) \(\approx\) \(1.80004 - 1.04036i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (-0.815 - 4.93i)T \)
23 \( 1 + (4.80 + 22.4i)T \)
good2 \( 1 + (0.184 + 2.58i)T + (-3.95 + 0.569i)T^{2} \)
3 \( 1 + (-4.62 - 1.00i)T + (8.18 + 3.73i)T^{2} \)
7 \( 1 + (-0.277 + 0.508i)T + (-26.4 - 41.2i)T^{2} \)
11 \( 1 + (-1.72 - 1.99i)T + (-17.2 + 119. i)T^{2} \)
13 \( 1 + (3.62 + 6.62i)T + (-91.3 + 142. i)T^{2} \)
17 \( 1 + (1.02 + 1.37i)T + (-81.4 + 277. i)T^{2} \)
19 \( 1 + (18.5 - 2.67i)T + (346. - 101. i)T^{2} \)
29 \( 1 + (33.7 + 4.85i)T + (806. + 236. i)T^{2} \)
31 \( 1 + (-39.4 - 25.3i)T + (399. + 874. i)T^{2} \)
37 \( 1 + (-23.1 - 62.0i)T + (-1.03e3 + 896. i)T^{2} \)
41 \( 1 + (30.3 + 66.4i)T + (-1.10e3 + 1.27e3i)T^{2} \)
43 \( 1 + (-31.0 - 6.74i)T + (1.68e3 + 768. i)T^{2} \)
47 \( 1 + (13.5 - 13.5i)T - 2.20e3iT^{2} \)
53 \( 1 + (-51.5 - 28.1i)T + (1.51e3 + 2.36e3i)T^{2} \)
59 \( 1 + (-22.3 + 76.0i)T + (-2.92e3 - 1.88e3i)T^{2} \)
61 \( 1 + (18.6 + 11.9i)T + (1.54e3 + 3.38e3i)T^{2} \)
67 \( 1 + (2.91 + 40.7i)T + (-4.44e3 + 638. i)T^{2} \)
71 \( 1 + (3.05 - 3.52i)T + (-717. - 4.98e3i)T^{2} \)
73 \( 1 + (-23.5 + 31.5i)T + (-1.50e3 - 5.11e3i)T^{2} \)
79 \( 1 + (15.8 - 53.9i)T + (-5.25e3 - 3.37e3i)T^{2} \)
83 \( 1 + (-17.7 + 6.60i)T + (5.20e3 - 4.51e3i)T^{2} \)
89 \( 1 + (13.3 + 20.7i)T + (-3.29e3 + 7.20e3i)T^{2} \)
97 \( 1 + (-106. - 39.5i)T + (7.11e3 + 6.16e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.19889407537199032162534762503, −12.08478953289933495956546543499, −10.73005966071427555579833755857, −10.14332807729907722334991945694, −9.207635082758642768030671491118, −8.028555944633038796149664536874, −6.66792898632520902331351860248, −4.15275264597660558517402128284, −3.04469900131317903116628563230, −2.17353277757817623496157109685, 2.15681800450674662442189927739, 4.21042482662782255186598841757, 5.78433433338129196420254286179, 7.17733627603116600075561266075, 8.106258015771607101624361884518, 8.813743840733353111084814389813, 9.584365317557933223804617621796, 11.65307591311186614496353538331, 13.06785430593427949600596171264, 13.67315948920712205727286891962

Graph of the $Z$-function along the critical line