Properties

Label 2-115-115.108-c2-0-11
Degree $2$
Conductor $115$
Sign $-0.112 - 0.993i$
Analytic cond. $3.13352$
Root an. cond. $1.77017$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.190 + 2.65i)2-s + (2.92 + 0.637i)3-s + (−3.07 + 0.441i)4-s + (4.85 + 1.19i)5-s + (−1.13 + 7.90i)6-s + (3.40 − 6.23i)7-s + (0.508 + 2.33i)8-s + (−0.0154 − 0.00705i)9-s + (−2.24 + 13.1i)10-s + (−11.3 − 13.1i)11-s + (−9.27 − 0.663i)12-s + (6.58 + 12.0i)13-s + (17.2 + 7.85i)14-s + (13.4 + 6.58i)15-s + (−18.0 + 5.29i)16-s + (−14.9 − 20.0i)17-s + ⋯
L(s)  = 1  + (0.0950 + 1.32i)2-s + (0.976 + 0.212i)3-s + (−0.767 + 0.110i)4-s + (0.971 + 0.238i)5-s + (−0.189 + 1.31i)6-s + (0.486 − 0.890i)7-s + (0.0636 + 0.292i)8-s + (−0.00171 − 0.000783i)9-s + (−0.224 + 1.31i)10-s + (−1.03 − 1.19i)11-s + (−0.772 − 0.0552i)12-s + (0.506 + 0.927i)13-s + (1.22 + 0.561i)14-s + (0.897 + 0.438i)15-s + (−1.12 + 0.330i)16-s + (−0.881 − 1.17i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.112 - 0.993i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.112 - 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(115\)    =    \(5 \cdot 23\)
Sign: $-0.112 - 0.993i$
Analytic conductor: \(3.13352\)
Root analytic conductor: \(1.77017\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{115} (108, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 115,\ (\ :1),\ -0.112 - 0.993i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.40473 + 1.57301i\)
\(L(\frac12)\) \(\approx\) \(1.40473 + 1.57301i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (-4.85 - 1.19i)T \)
23 \( 1 + (22.5 - 4.67i)T \)
good2 \( 1 + (-0.190 - 2.65i)T + (-3.95 + 0.569i)T^{2} \)
3 \( 1 + (-2.92 - 0.637i)T + (8.18 + 3.73i)T^{2} \)
7 \( 1 + (-3.40 + 6.23i)T + (-26.4 - 41.2i)T^{2} \)
11 \( 1 + (11.3 + 13.1i)T + (-17.2 + 119. i)T^{2} \)
13 \( 1 + (-6.58 - 12.0i)T + (-91.3 + 142. i)T^{2} \)
17 \( 1 + (14.9 + 20.0i)T + (-81.4 + 277. i)T^{2} \)
19 \( 1 + (25.4 - 3.66i)T + (346. - 101. i)T^{2} \)
29 \( 1 + (-32.0 - 4.60i)T + (806. + 236. i)T^{2} \)
31 \( 1 + (-42.8 - 27.5i)T + (399. + 874. i)T^{2} \)
37 \( 1 + (-6.50 - 17.4i)T + (-1.03e3 + 896. i)T^{2} \)
41 \( 1 + (0.871 + 1.90i)T + (-1.10e3 + 1.27e3i)T^{2} \)
43 \( 1 + (-21.2 - 4.62i)T + (1.68e3 + 768. i)T^{2} \)
47 \( 1 + (-36.1 + 36.1i)T - 2.20e3iT^{2} \)
53 \( 1 + (-7.30 - 3.99i)T + (1.51e3 + 2.36e3i)T^{2} \)
59 \( 1 + (-5.48 + 18.6i)T + (-2.92e3 - 1.88e3i)T^{2} \)
61 \( 1 + (-17.0 - 10.9i)T + (1.54e3 + 3.38e3i)T^{2} \)
67 \( 1 + (-1.88 - 26.4i)T + (-4.44e3 + 638. i)T^{2} \)
71 \( 1 + (84.0 - 97.0i)T + (-717. - 4.98e3i)T^{2} \)
73 \( 1 + (7.57 - 10.1i)T + (-1.50e3 - 5.11e3i)T^{2} \)
79 \( 1 + (-4.19 + 14.2i)T + (-5.25e3 - 3.37e3i)T^{2} \)
83 \( 1 + (-10.8 + 4.02i)T + (5.20e3 - 4.51e3i)T^{2} \)
89 \( 1 + (-25.4 - 39.5i)T + (-3.29e3 + 7.20e3i)T^{2} \)
97 \( 1 + (96.3 + 35.9i)T + (7.11e3 + 6.16e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.75813216610696798803906037819, −13.61640333181519517914542300866, −11.30046104034600967787732666165, −10.28013317985434871782276066818, −8.792829727998810892419074680079, −8.274565955692483871408183588072, −6.92116073345891750430855803717, −5.94668304042991401742785154504, −4.49318004580291177185587871817, −2.54299439050681300267095575086, 2.09455077610475568406737350970, 2.50989453414499834183794075300, 4.48908810227944282916462871184, 6.09081115810241540672878100651, 8.080058381824359897479653851963, 8.879369304641292904064392853637, 10.10464846026742406199656738390, 10.76889508603759597134732976456, 12.28768750279412162618866363851, 12.95990048646369946358634318733

Graph of the $Z$-function along the critical line