Properties

Label 2-11466-1.1-c1-0-46
Degree $2$
Conductor $11466$
Sign $-1$
Analytic cond. $91.5564$
Root an. cond. $9.56851$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 2·5-s + 8-s − 2·10-s − 3·11-s + 13-s + 16-s + 17-s + 3·19-s − 2·20-s − 3·22-s − 25-s + 26-s − 3·29-s + 4·31-s + 32-s + 34-s − 2·37-s + 3·38-s − 2·40-s + 2·41-s + 6·43-s − 3·44-s − 9·47-s − 50-s + 52-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.894·5-s + 0.353·8-s − 0.632·10-s − 0.904·11-s + 0.277·13-s + 1/4·16-s + 0.242·17-s + 0.688·19-s − 0.447·20-s − 0.639·22-s − 1/5·25-s + 0.196·26-s − 0.557·29-s + 0.718·31-s + 0.176·32-s + 0.171·34-s − 0.328·37-s + 0.486·38-s − 0.316·40-s + 0.312·41-s + 0.914·43-s − 0.452·44-s − 1.31·47-s − 0.141·50-s + 0.138·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11466 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11466 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11466\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(91.5564\)
Root analytic conductor: \(9.56851\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 11466,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 + 3 T + p T^{2} \) 1.11.d
17 \( 1 - T + p T^{2} \) 1.17.ab
19 \( 1 - 3 T + p T^{2} \) 1.19.ad
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 + T + p T^{2} \) 1.53.b
59 \( 1 - 11 T + p T^{2} \) 1.59.al
61 \( 1 + 11 T + p T^{2} \) 1.61.l
67 \( 1 + 7 T + p T^{2} \) 1.67.h
71 \( 1 + 15 T + p T^{2} \) 1.71.p
73 \( 1 - 12 T + p T^{2} \) 1.73.am
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.28280658372378, −16.16562658360320, −15.56974316136697, −15.03766566601460, −14.54617427462424, −13.74900096307460, −13.37758563513532, −12.73672057635469, −12.10465099820924, −11.68403054429668, −11.07356777735378, −10.52260667309293, −9.854700666152639, −9.102472828726552, −8.241851171629212, −7.750945339585402, −7.323326098262351, −6.470496331845077, −5.763890205489175, −5.128588346733742, −4.463252225824166, −3.732162667484577, −3.134763030082304, −2.357402150859162, −1.237410520427512, 0, 1.237410520427512, 2.357402150859162, 3.134763030082304, 3.732162667484577, 4.463252225824166, 5.128588346733742, 5.763890205489175, 6.470496331845077, 7.323326098262351, 7.750945339585402, 8.241851171629212, 9.102472828726552, 9.854700666152639, 10.52260667309293, 11.07356777735378, 11.68403054429668, 12.10465099820924, 12.73672057635469, 13.37758563513532, 13.74900096307460, 14.54617427462424, 15.03766566601460, 15.56974316136697, 16.16562658360320, 16.28280658372378

Graph of the $Z$-function along the critical line