Properties

Label 2-11466-1.1-c1-0-39
Degree $2$
Conductor $11466$
Sign $1$
Analytic cond. $91.5564$
Root an. cond. $9.56851$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 2·5-s + 8-s + 2·10-s + 4·11-s − 13-s + 16-s + 6·17-s + 4·19-s + 2·20-s + 4·22-s − 25-s − 26-s + 4·29-s − 4·31-s + 32-s + 6·34-s + 12·37-s + 4·38-s + 2·40-s + 12·41-s − 8·43-s + 4·44-s + 2·47-s − 50-s − 52-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.894·5-s + 0.353·8-s + 0.632·10-s + 1.20·11-s − 0.277·13-s + 1/4·16-s + 1.45·17-s + 0.917·19-s + 0.447·20-s + 0.852·22-s − 1/5·25-s − 0.196·26-s + 0.742·29-s − 0.718·31-s + 0.176·32-s + 1.02·34-s + 1.97·37-s + 0.648·38-s + 0.316·40-s + 1.87·41-s − 1.21·43-s + 0.603·44-s + 0.291·47-s − 0.141·50-s − 0.138·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11466 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11466 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11466\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(91.5564\)
Root analytic conductor: \(9.56851\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 11466,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.231567458\)
\(L(\frac12)\) \(\approx\) \(5.231567458\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 \)
13 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 12 T + p T^{2} \) 1.37.am
41 \( 1 - 12 T + p T^{2} \) 1.41.am
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 + 8 T + p T^{2} \) 1.53.i
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 4 T + p T^{2} \) 1.89.ae
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.33432873309609, −16.07121141879274, −14.90050788801329, −14.74817845297972, −14.13243958492821, −13.68995603738613, −13.14795225139383, −12.27485010130774, −12.10190443101204, −11.36908330946999, −10.71756273219436, −9.955300210857007, −9.469715606973959, −9.095444527963656, −7.837681437470483, −7.617013519920214, −6.633362569928499, −6.054428568686478, −5.667545527416671, −4.842966792177620, −4.163204272336281, −3.321162346053718, −2.714072920284594, −1.668067351069134, −1.042944646143161, 1.042944646143161, 1.668067351069134, 2.714072920284594, 3.321162346053718, 4.163204272336281, 4.842966792177620, 5.667545527416671, 6.054428568686478, 6.633362569928499, 7.617013519920214, 7.837681437470483, 9.095444527963656, 9.469715606973959, 9.955300210857007, 10.71756273219436, 11.36908330946999, 12.10190443101204, 12.27485010130774, 13.14795225139383, 13.68995603738613, 14.13243958492821, 14.74817845297972, 14.90050788801329, 16.07121141879274, 16.33432873309609

Graph of the $Z$-function along the critical line