L(s) = 1 | + (−0.5 − 0.866i)2-s + (0.5 − 0.866i)3-s + (−0.499 + 0.866i)4-s + (0.5 − 0.866i)5-s − 0.999·6-s + 0.999·8-s + (−0.499 − 0.866i)9-s − 0.999·10-s + (0.499 + 0.866i)12-s + (−0.499 − 0.866i)15-s + (−0.5 − 0.866i)16-s + (0.5 − 0.866i)17-s + (−0.499 + 0.866i)18-s + (−0.5 + 0.866i)19-s + (0.499 + 0.866i)20-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)2-s + (0.5 − 0.866i)3-s + (−0.499 + 0.866i)4-s + (0.5 − 0.866i)5-s − 0.999·6-s + 0.999·8-s + (−0.499 − 0.866i)9-s − 0.999·10-s + (0.499 + 0.866i)12-s + (−0.499 − 0.866i)15-s + (−0.5 − 0.866i)16-s + (0.5 − 0.866i)17-s + (−0.499 + 0.866i)18-s + (−0.5 + 0.866i)19-s + (0.499 + 0.866i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.813 + 0.582i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.813 + 0.582i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9606098876\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9606098876\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 5 | \( 1 + (-0.5 + 0.866i)T \) |
| 19 | \( 1 + (0.5 - 0.866i)T \) |
good | 7 | \( 1 + T^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 - T + T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (-1.5 + 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (-1 - 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + 1.73iT - T^{2} \) |
| 89 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.703087537625529336268491072321, −8.807747836223584929844541887408, −8.280766370437092961227546576922, −7.53191296207671711697830257977, −6.46753058674547840635102946477, −5.34900201534526514661965425328, −4.22813377514899837428763554232, −3.06760572592867028226998571665, −2.05559530897385036239021788498, −1.03872888843775910444381660840,
2.02258717077329437599779184927, 3.28014588770826760071059792705, 4.41222342364458943284308456279, 5.36135692094278045153549721214, 6.23427632194586153163138489735, 7.02134679169361115077793797484, 8.039617471650356980984865039318, 8.642044085026649807091077190094, 9.592605708246246520154560015035, 10.08843894636693517243216363931