Properties

Label 2-114-57.29-c1-0-0
Degree $2$
Conductor $114$
Sign $-0.716 - 0.697i$
Analytic cond. $0.910294$
Root an. cond. $0.954093$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.173 + 0.984i)2-s + (−1.69 − 0.355i)3-s + (−0.939 + 0.342i)4-s + (−0.882 + 2.42i)5-s + (0.0553 − 1.73i)6-s + (−1.58 + 2.74i)7-s + (−0.5 − 0.866i)8-s + (2.74 + 1.20i)9-s + (−2.54 − 0.448i)10-s + (−2.16 + 1.25i)11-s + (1.71 − 0.246i)12-s + (2.71 − 3.24i)13-s + (−2.97 − 1.08i)14-s + (2.35 − 3.79i)15-s + (0.766 − 0.642i)16-s + (1.32 − 0.233i)17-s + ⋯
L(s)  = 1  + (0.122 + 0.696i)2-s + (−0.978 − 0.205i)3-s + (−0.469 + 0.171i)4-s + (−0.394 + 1.08i)5-s + (0.0225 − 0.706i)6-s + (−0.598 + 1.03i)7-s + (−0.176 − 0.306i)8-s + (0.915 + 0.401i)9-s + (−0.803 − 0.141i)10-s + (−0.653 + 0.377i)11-s + (0.494 − 0.0710i)12-s + (0.754 − 0.898i)13-s + (−0.795 − 0.289i)14-s + (0.608 − 0.980i)15-s + (0.191 − 0.160i)16-s + (0.320 − 0.0565i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 114 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.716 - 0.697i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 114 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.716 - 0.697i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(114\)    =    \(2 \cdot 3 \cdot 19\)
Sign: $-0.716 - 0.697i$
Analytic conductor: \(0.910294\)
Root analytic conductor: \(0.954093\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{114} (29, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 114,\ (\ :1/2),\ -0.716 - 0.697i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.241355 + 0.593517i\)
\(L(\frac12)\) \(\approx\) \(0.241355 + 0.593517i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.173 - 0.984i)T \)
3 \( 1 + (1.69 + 0.355i)T \)
19 \( 1 + (-3.14 - 3.01i)T \)
good5 \( 1 + (0.882 - 2.42i)T + (-3.83 - 3.21i)T^{2} \)
7 \( 1 + (1.58 - 2.74i)T + (-3.5 - 6.06i)T^{2} \)
11 \( 1 + (2.16 - 1.25i)T + (5.5 - 9.52i)T^{2} \)
13 \( 1 + (-2.71 + 3.24i)T + (-2.25 - 12.8i)T^{2} \)
17 \( 1 + (-1.32 + 0.233i)T + (15.9 - 5.81i)T^{2} \)
23 \( 1 + (1.30 + 3.58i)T + (-17.6 + 14.7i)T^{2} \)
29 \( 1 + (1.32 - 7.49i)T + (-27.2 - 9.91i)T^{2} \)
31 \( 1 + (-6.89 - 3.97i)T + (15.5 + 26.8i)T^{2} \)
37 \( 1 - 4.10iT - 37T^{2} \)
41 \( 1 + (-4.95 + 4.16i)T + (7.11 - 40.3i)T^{2} \)
43 \( 1 + (11.7 + 4.27i)T + (32.9 + 27.6i)T^{2} \)
47 \( 1 + (-6.16 - 1.08i)T + (44.1 + 16.0i)T^{2} \)
53 \( 1 + (3.46 - 1.26i)T + (40.6 - 34.0i)T^{2} \)
59 \( 1 + (1.54 + 8.75i)T + (-55.4 + 20.1i)T^{2} \)
61 \( 1 + (0.133 - 0.0485i)T + (46.7 - 39.2i)T^{2} \)
67 \( 1 + (4.48 + 0.791i)T + (62.9 + 22.9i)T^{2} \)
71 \( 1 + (-8.59 - 3.12i)T + (54.3 + 45.6i)T^{2} \)
73 \( 1 + (1.67 - 1.40i)T + (12.6 - 71.8i)T^{2} \)
79 \( 1 + (-6.41 - 7.64i)T + (-13.7 + 77.7i)T^{2} \)
83 \( 1 + (-12.3 - 7.11i)T + (41.5 + 71.8i)T^{2} \)
89 \( 1 + (12.7 + 10.6i)T + (15.4 + 87.6i)T^{2} \)
97 \( 1 + (-0.538 + 0.0949i)T + (91.1 - 33.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.07326300619033799573469171471, −12.77050695885013944320113102445, −12.11884503856924290770218776446, −10.82022482476527321203791452373, −9.972874864985412240576743943625, −8.280536776008512771241218123211, −7.12266382131761641074341282271, −6.16852533958799680590282538300, −5.21352238733988797866486616341, −3.20806724500156506145965291447, 0.811678746607932647894916086709, 3.83073855748623438737217431605, 4.80092539058265098982760743232, 6.18126920669865048978847474985, 7.75476612057040347973778324229, 9.276209455572470696759049752050, 10.18120381341094999144470627606, 11.30921141009788960968144741533, 11.96760656956521964946211480237, 13.21090281648750660169401517775

Graph of the $Z$-function along the critical line