Properties

Label 2-114-57.2-c1-0-2
Degree $2$
Conductor $114$
Sign $0.930 + 0.365i$
Analytic cond. $0.910294$
Root an. cond. $0.954093$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.173 − 0.984i)2-s + (1.67 + 0.431i)3-s + (−0.939 − 0.342i)4-s + (1.14 + 3.13i)5-s + (0.716 − 1.57i)6-s + (−1.07 − 1.85i)7-s + (−0.5 + 0.866i)8-s + (2.62 + 1.44i)9-s + (3.28 − 0.579i)10-s + (−5.41 − 3.12i)11-s + (−1.42 − 0.979i)12-s + (−2.56 − 3.05i)13-s + (−2.01 + 0.734i)14-s + (0.560 + 5.75i)15-s + (0.766 + 0.642i)16-s + (−0.403 − 0.0711i)17-s + ⋯
L(s)  = 1  + (0.122 − 0.696i)2-s + (0.968 + 0.249i)3-s + (−0.469 − 0.171i)4-s + (0.510 + 1.40i)5-s + (0.292 − 0.643i)6-s + (−0.405 − 0.702i)7-s + (−0.176 + 0.306i)8-s + (0.875 + 0.482i)9-s + (1.03 − 0.183i)10-s + (−1.63 − 0.943i)11-s + (−0.412 − 0.282i)12-s + (−0.710 − 0.846i)13-s + (−0.539 + 0.196i)14-s + (0.144 + 1.48i)15-s + (0.191 + 0.160i)16-s + (−0.0978 − 0.0172i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 114 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.930 + 0.365i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 114 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.930 + 0.365i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(114\)    =    \(2 \cdot 3 \cdot 19\)
Sign: $0.930 + 0.365i$
Analytic conductor: \(0.910294\)
Root analytic conductor: \(0.954093\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{114} (59, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 114,\ (\ :1/2),\ 0.930 + 0.365i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.33342 - 0.252193i\)
\(L(\frac12)\) \(\approx\) \(1.33342 - 0.252193i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.173 + 0.984i)T \)
3 \( 1 + (-1.67 - 0.431i)T \)
19 \( 1 + (-4.34 + 0.329i)T \)
good5 \( 1 + (-1.14 - 3.13i)T + (-3.83 + 3.21i)T^{2} \)
7 \( 1 + (1.07 + 1.85i)T + (-3.5 + 6.06i)T^{2} \)
11 \( 1 + (5.41 + 3.12i)T + (5.5 + 9.52i)T^{2} \)
13 \( 1 + (2.56 + 3.05i)T + (-2.25 + 12.8i)T^{2} \)
17 \( 1 + (0.403 + 0.0711i)T + (15.9 + 5.81i)T^{2} \)
23 \( 1 + (0.280 - 0.770i)T + (-17.6 - 14.7i)T^{2} \)
29 \( 1 + (-0.805 - 4.56i)T + (-27.2 + 9.91i)T^{2} \)
31 \( 1 + (2.02 - 1.16i)T + (15.5 - 26.8i)T^{2} \)
37 \( 1 - 6.01iT - 37T^{2} \)
41 \( 1 + (-0.926 - 0.777i)T + (7.11 + 40.3i)T^{2} \)
43 \( 1 + (-5.87 + 2.13i)T + (32.9 - 27.6i)T^{2} \)
47 \( 1 + (7.59 - 1.33i)T + (44.1 - 16.0i)T^{2} \)
53 \( 1 + (0.220 + 0.0802i)T + (40.6 + 34.0i)T^{2} \)
59 \( 1 + (-0.930 + 5.27i)T + (-55.4 - 20.1i)T^{2} \)
61 \( 1 + (-7.30 - 2.65i)T + (46.7 + 39.2i)T^{2} \)
67 \( 1 + (-3.48 + 0.614i)T + (62.9 - 22.9i)T^{2} \)
71 \( 1 + (-4.19 + 1.52i)T + (54.3 - 45.6i)T^{2} \)
73 \( 1 + (4.33 + 3.63i)T + (12.6 + 71.8i)T^{2} \)
79 \( 1 + (8.05 - 9.59i)T + (-13.7 - 77.7i)T^{2} \)
83 \( 1 + (-8.01 + 4.62i)T + (41.5 - 71.8i)T^{2} \)
89 \( 1 + (5.61 - 4.71i)T + (15.4 - 87.6i)T^{2} \)
97 \( 1 + (16.0 + 2.83i)T + (91.1 + 33.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.60592128396102487601644051938, −12.85776320182177351781182275783, −11.01163731194803310900725370081, −10.34380500809456920032566337423, −9.745670671319601744156541285195, −8.111503613329624352762278843883, −7.09578501697515224646991153925, −5.31935155958272448085992797205, −3.32136686441162803471039806262, −2.71487538198983525595867719210, 2.34059615826681349755095999868, 4.53584581617290505220326034315, 5.57881508231541731927475100820, 7.25975451281761104190035676622, 8.224617009009099915197045550490, 9.310028009968613094214829893903, 9.794302412235428772467292120253, 12.24339507368346136117161501361, 12.83435064254517825779387854396, 13.56071282024081886167599116633

Graph of the $Z$-function along the critical line