L(s) = 1 | + (0.173 − 0.984i)2-s + (1.67 + 0.431i)3-s + (−0.939 − 0.342i)4-s + (1.14 + 3.13i)5-s + (0.716 − 1.57i)6-s + (−1.07 − 1.85i)7-s + (−0.5 + 0.866i)8-s + (2.62 + 1.44i)9-s + (3.28 − 0.579i)10-s + (−5.41 − 3.12i)11-s + (−1.42 − 0.979i)12-s + (−2.56 − 3.05i)13-s + (−2.01 + 0.734i)14-s + (0.560 + 5.75i)15-s + (0.766 + 0.642i)16-s + (−0.403 − 0.0711i)17-s + ⋯ |
L(s) = 1 | + (0.122 − 0.696i)2-s + (0.968 + 0.249i)3-s + (−0.469 − 0.171i)4-s + (0.510 + 1.40i)5-s + (0.292 − 0.643i)6-s + (−0.405 − 0.702i)7-s + (−0.176 + 0.306i)8-s + (0.875 + 0.482i)9-s + (1.03 − 0.183i)10-s + (−1.63 − 0.943i)11-s + (−0.412 − 0.282i)12-s + (−0.710 − 0.846i)13-s + (−0.539 + 0.196i)14-s + (0.144 + 1.48i)15-s + (0.191 + 0.160i)16-s + (−0.0978 − 0.0172i)17-s + ⋯ |
Λ(s)=(=(114s/2ΓC(s)L(s)(0.930+0.365i)Λ(2−s)
Λ(s)=(=(114s/2ΓC(s+1/2)L(s)(0.930+0.365i)Λ(1−s)
Degree: |
2 |
Conductor: |
114
= 2⋅3⋅19
|
Sign: |
0.930+0.365i
|
Analytic conductor: |
0.910294 |
Root analytic conductor: |
0.954093 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ114(59,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 114, ( :1/2), 0.930+0.365i)
|
Particular Values
L(1) |
≈ |
1.33342−0.252193i |
L(21) |
≈ |
1.33342−0.252193i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.173+0.984i)T |
| 3 | 1+(−1.67−0.431i)T |
| 19 | 1+(−4.34+0.329i)T |
good | 5 | 1+(−1.14−3.13i)T+(−3.83+3.21i)T2 |
| 7 | 1+(1.07+1.85i)T+(−3.5+6.06i)T2 |
| 11 | 1+(5.41+3.12i)T+(5.5+9.52i)T2 |
| 13 | 1+(2.56+3.05i)T+(−2.25+12.8i)T2 |
| 17 | 1+(0.403+0.0711i)T+(15.9+5.81i)T2 |
| 23 | 1+(0.280−0.770i)T+(−17.6−14.7i)T2 |
| 29 | 1+(−0.805−4.56i)T+(−27.2+9.91i)T2 |
| 31 | 1+(2.02−1.16i)T+(15.5−26.8i)T2 |
| 37 | 1−6.01iT−37T2 |
| 41 | 1+(−0.926−0.777i)T+(7.11+40.3i)T2 |
| 43 | 1+(−5.87+2.13i)T+(32.9−27.6i)T2 |
| 47 | 1+(7.59−1.33i)T+(44.1−16.0i)T2 |
| 53 | 1+(0.220+0.0802i)T+(40.6+34.0i)T2 |
| 59 | 1+(−0.930+5.27i)T+(−55.4−20.1i)T2 |
| 61 | 1+(−7.30−2.65i)T+(46.7+39.2i)T2 |
| 67 | 1+(−3.48+0.614i)T+(62.9−22.9i)T2 |
| 71 | 1+(−4.19+1.52i)T+(54.3−45.6i)T2 |
| 73 | 1+(4.33+3.63i)T+(12.6+71.8i)T2 |
| 79 | 1+(8.05−9.59i)T+(−13.7−77.7i)T2 |
| 83 | 1+(−8.01+4.62i)T+(41.5−71.8i)T2 |
| 89 | 1+(5.61−4.71i)T+(15.4−87.6i)T2 |
| 97 | 1+(16.0+2.83i)T+(91.1+33.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.60592128396102487601644051938, −12.85776320182177351781182275783, −11.01163731194803310900725370081, −10.34380500809456920032566337423, −9.745670671319601744156541285195, −8.111503613329624352762278843883, −7.09578501697515224646991153925, −5.31935155958272448085992797205, −3.32136686441162803471039806262, −2.71487538198983525595867719210,
2.34059615826681349755095999868, 4.53584581617290505220326034315, 5.57881508231541731927475100820, 7.25975451281761104190035676622, 8.224617009009099915197045550490, 9.310028009968613094214829893903, 9.794302412235428772467292120253, 12.24339507368346136117161501361, 12.83435064254517825779387854396, 13.56071282024081886167599116633