L(s) = 1 | + (−0.173 + 0.984i)2-s + (−0.766 − 0.642i)3-s + (−0.939 − 0.342i)4-s + (3.20 − 1.16i)5-s + (0.766 − 0.642i)6-s + (1.43 + 2.49i)7-s + (0.5 − 0.866i)8-s + (0.173 + 0.984i)9-s + (0.592 + 3.35i)10-s + (0.173 − 0.300i)11-s + (0.499 + 0.866i)12-s + (−1.26 + 1.06i)13-s + (−2.70 + 0.984i)14-s + (−3.20 − 1.16i)15-s + (0.766 + 0.642i)16-s + (1.20 − 6.83i)17-s + ⋯ |
L(s) = 1 | + (−0.122 + 0.696i)2-s + (−0.442 − 0.371i)3-s + (−0.469 − 0.171i)4-s + (1.43 − 0.521i)5-s + (0.312 − 0.262i)6-s + (0.544 + 0.942i)7-s + (0.176 − 0.306i)8-s + (0.0578 + 0.328i)9-s + (0.187 + 1.06i)10-s + (0.0523 − 0.0906i)11-s + (0.144 + 0.249i)12-s + (−0.351 + 0.294i)13-s + (−0.723 + 0.263i)14-s + (−0.827 − 0.301i)15-s + (0.191 + 0.160i)16-s + (0.292 − 1.65i)17-s + ⋯ |
Λ(s)=(=(114s/2ΓC(s)L(s)(0.877−0.479i)Λ(2−s)
Λ(s)=(=(114s/2ΓC(s+1/2)L(s)(0.877−0.479i)Λ(1−s)
Degree: |
2 |
Conductor: |
114
= 2⋅3⋅19
|
Sign: |
0.877−0.479i
|
Analytic conductor: |
0.910294 |
Root analytic conductor: |
0.954093 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ114(55,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 114, ( :1/2), 0.877−0.479i)
|
Particular Values
L(1) |
≈ |
0.993270+0.253851i |
L(21) |
≈ |
0.993270+0.253851i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.173−0.984i)T |
| 3 | 1+(0.766+0.642i)T |
| 19 | 1+(2.82−3.31i)T |
good | 5 | 1+(−3.20+1.16i)T+(3.83−3.21i)T2 |
| 7 | 1+(−1.43−2.49i)T+(−3.5+6.06i)T2 |
| 11 | 1+(−0.173+0.300i)T+(−5.5−9.52i)T2 |
| 13 | 1+(1.26−1.06i)T+(2.25−12.8i)T2 |
| 17 | 1+(−1.20+6.83i)T+(−15.9−5.81i)T2 |
| 23 | 1+(6.39+2.32i)T+(17.6+14.7i)T2 |
| 29 | 1+(−1.10−6.25i)T+(−27.2+9.91i)T2 |
| 31 | 1+(0.798+1.38i)T+(−15.5+26.8i)T2 |
| 37 | 1+11.2T+37T2 |
| 41 | 1+(2.67+2.24i)T+(7.11+40.3i)T2 |
| 43 | 1+(2.14−0.780i)T+(32.9−27.6i)T2 |
| 47 | 1+(−0.971−5.51i)T+(−44.1+16.0i)T2 |
| 53 | 1+(1.86+0.677i)T+(40.6+34.0i)T2 |
| 59 | 1+(−0.0773+0.438i)T+(−55.4−20.1i)T2 |
| 61 | 1+(−11.7−4.28i)T+(46.7+39.2i)T2 |
| 67 | 1+(0.187+1.06i)T+(−62.9+22.9i)T2 |
| 71 | 1+(−15.6+5.68i)T+(54.3−45.6i)T2 |
| 73 | 1+(−9.51−7.98i)T+(12.6+71.8i)T2 |
| 79 | 1+(8.36+7.02i)T+(13.7+77.7i)T2 |
| 83 | 1+(5.85+10.1i)T+(−41.5+71.8i)T2 |
| 89 | 1+(−1.37+1.15i)T+(15.4−87.6i)T2 |
| 97 | 1+(−0.634+3.59i)T+(−91.1−33.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.92656003282680194060307777169, −12.67851525005982149025215192136, −11.86632927489924931871864719651, −10.26685139703125150131090015462, −9.278447893386050270543240421544, −8.330520731403496127559970996531, −6.81491205309252606353575066094, −5.68367552208875440906799089145, −5.02212734313338549169827739806, −1.98266696372122383748274164302,
1.93162657894447532058412909292, 3.92441416291297868357236060348, 5.41114720546800750565035612468, 6.64844246915801982456791336779, 8.284280447930385401417654129636, 9.843652852307938666040817989673, 10.30234638788754787869128142978, 11.09990197580290045197938940752, 12.44666093164303591635835261242, 13.54599378759990768054358380766