# Properties

 Label 2-1134-63.16-c1-0-27 Degree $2$ Conductor $1134$ Sign $-0.975 + 0.220i$ Analytic cond. $9.05503$ Root an. cond. $3.00915$ Motivic weight $1$ Arithmetic yes Rational no Primitive yes Self-dual no Analytic rank $0$

# Related objects

## Dirichlet series

 L(s)  = 1 + (−0.5 − 0.866i)2-s + (−0.499 + 0.866i)4-s + (2.5 − 0.866i)7-s + 0.999·8-s − 6·11-s + (−2.5 − 4.33i)13-s + (−2 − 1.73i)14-s + (−0.5 − 0.866i)16-s + (3 + 5.19i)17-s + (2 − 3.46i)19-s + (3 + 5.19i)22-s − 6·23-s − 5·25-s + (−2.5 + 4.33i)26-s + (−0.499 + 2.59i)28-s + (3 − 5.19i)29-s + ⋯
 L(s)  = 1 + (−0.353 − 0.612i)2-s + (−0.249 + 0.433i)4-s + (0.944 − 0.327i)7-s + 0.353·8-s − 1.80·11-s + (−0.693 − 1.20i)13-s + (−0.534 − 0.462i)14-s + (−0.125 − 0.216i)16-s + (0.727 + 1.26i)17-s + (0.458 − 0.794i)19-s + (0.639 + 1.10i)22-s − 1.25·23-s − 25-s + (−0.490 + 0.849i)26-s + (−0.0944 + 0.490i)28-s + (0.557 − 0.964i)29-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 1134 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.975 + 0.220i)\, \overline{\Lambda}(2-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 1134 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.975 + 0.220i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$1134$$    =    $$2 \cdot 3^{4} \cdot 7$$ Sign: $-0.975 + 0.220i$ Analytic conductor: $$9.05503$$ Root analytic conductor: $$3.00915$$ Motivic weight: $$1$$ Rational: no Arithmetic: yes Character: $\chi_{1134} (541, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(2,\ 1134,\ (\ :1/2),\ -0.975 + 0.220i)$$

## Particular Values

 $$L(1)$$ $$\approx$$ $$0.6533077557$$ $$L(\frac12)$$ $$\approx$$ $$0.6533077557$$ $$L(\frac{3}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad2 $$1 + (0.5 + 0.866i)T$$
3 $$1$$
7 $$1 + (-2.5 + 0.866i)T$$
good5 $$1 + 5T^{2}$$
11 $$1 + 6T + 11T^{2}$$
13 $$1 + (2.5 + 4.33i)T + (-6.5 + 11.2i)T^{2}$$
17 $$1 + (-3 - 5.19i)T + (-8.5 + 14.7i)T^{2}$$
19 $$1 + (-2 + 3.46i)T + (-9.5 - 16.4i)T^{2}$$
23 $$1 + 6T + 23T^{2}$$
29 $$1 + (-3 + 5.19i)T + (-14.5 - 25.1i)T^{2}$$
31 $$1 + (-0.5 + 0.866i)T + (-15.5 - 26.8i)T^{2}$$
37 $$1 + (-0.5 + 0.866i)T + (-18.5 - 32.0i)T^{2}$$
41 $$1 + (3 + 5.19i)T + (-20.5 + 35.5i)T^{2}$$
43 $$1 + (-0.5 + 0.866i)T + (-21.5 - 37.2i)T^{2}$$
47 $$1 + (3 + 5.19i)T + (-23.5 + 40.7i)T^{2}$$
53 $$1 + (3 + 5.19i)T + (-26.5 + 45.8i)T^{2}$$
59 $$1 + (3 - 5.19i)T + (-29.5 - 51.0i)T^{2}$$
61 $$1 + (-0.5 - 0.866i)T + (-30.5 + 52.8i)T^{2}$$
67 $$1 + (-0.5 + 0.866i)T + (-33.5 - 58.0i)T^{2}$$
71 $$1 + 12T + 71T^{2}$$
73 $$1 + (1 + 1.73i)T + (-36.5 + 63.2i)T^{2}$$
79 $$1 + (-0.5 - 0.866i)T + (-39.5 + 68.4i)T^{2}$$
83 $$1 + (-3 + 5.19i)T + (-41.5 - 71.8i)T^{2}$$
89 $$1 + (-44.5 - 77.0i)T^{2}$$
97 $$1 + (8.5 - 14.7i)T + (-48.5 - 84.0i)T^{2}$$
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$