L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.499 − 0.866i)4-s + (2.08 + 3.61i)5-s + (1.94 − 1.79i)7-s + 0.999i·8-s + (−3.61 − 2.08i)10-s + (0.0814 + 0.0470i)11-s − 3.79i·13-s + (−0.786 + 2.52i)14-s + (−0.5 − 0.866i)16-s + (3.82 − 6.62i)17-s + (6.77 − 3.91i)19-s + 4.17·20-s − 0.0940·22-s + (3.31 − 1.91i)23-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.249 − 0.433i)4-s + (0.932 + 1.61i)5-s + (0.734 − 0.678i)7-s + 0.353i·8-s + (−1.14 − 0.659i)10-s + (0.0245 + 0.0141i)11-s − 1.05i·13-s + (−0.210 + 0.675i)14-s + (−0.125 − 0.216i)16-s + (0.928 − 1.60i)17-s + (1.55 − 0.897i)19-s + 0.932·20-s − 0.0200·22-s + (0.691 − 0.399i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1134 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.939 - 0.341i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1134 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.939 - 0.341i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.650298421\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.650298421\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-1.94 + 1.79i)T \) |
good | 5 | \( 1 + (-2.08 - 3.61i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.0814 - 0.0470i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 3.79iT - 13T^{2} \) |
| 17 | \( 1 + (-3.82 + 6.62i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-6.77 + 3.91i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.31 + 1.91i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 2.03iT - 29T^{2} \) |
| 31 | \( 1 + (1.45 + 0.840i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (2.18 + 3.78i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 3.07T + 41T^{2} \) |
| 43 | \( 1 + 5.12T + 43T^{2} \) |
| 47 | \( 1 + (-2.54 - 4.41i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (6.05 + 3.49i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (5.21 - 9.02i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.69 + 1.55i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3.76 - 6.52i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 8.61iT - 71T^{2} \) |
| 73 | \( 1 + (0.129 + 0.0750i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-6.48 - 11.2i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 2.58T + 83T^{2} \) |
| 89 | \( 1 + (-1.37 - 2.37i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 4.06iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.861180365676616202309277077855, −9.310293406586615226062504975924, −7.949788380483102397665924929050, −7.25328471576681120392707540177, −6.90190776865642713013894094221, −5.65554572276798262706671974743, −5.08141279182572396526637195280, −3.27143188047518975523673082930, −2.57640672821323983001539520944, −1.04248762407145452981947744609,
1.50371500428630189031356078500, 1.66406004004760020350547973429, 3.45489365333909983716146771451, 4.75600667441920953642114542842, 5.44114931494427170288026891710, 6.24368163561575498805585068488, 7.68480251861846463209387317737, 8.384075207101802073291112992965, 9.003197630448842726834441240798, 9.602000838490566521458571011877