| L(s) = 1 | − 0.218·2-s − 2.36i·3-s − 1.95·4-s + 3.26·5-s + 0.515i·6-s + 0.862·8-s − 2.58·9-s − 0.711·10-s − 3.73i·11-s + 4.61i·12-s + 1.00i·13-s − 7.71i·15-s + 3.71·16-s − 4.44·17-s + 0.563·18-s + 5.90·19-s + ⋯ |
| L(s) = 1 | − 0.154·2-s − 1.36i·3-s − 0.976·4-s + 1.45·5-s + 0.210i·6-s + 0.304·8-s − 0.861·9-s − 0.225·10-s − 1.12i·11-s + 1.33i·12-s + 0.277i·13-s − 1.99i·15-s + 0.929·16-s − 1.07·17-s + 0.132·18-s + 1.35·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1127 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.695 + 0.718i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1127 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.695 + 0.718i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.411202956\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.411202956\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 \) |
| 23 | \( 1 + (2.88 + 3.83i)T \) |
| good | 2 | \( 1 + 0.218T + 2T^{2} \) |
| 3 | \( 1 + 2.36iT - 3T^{2} \) |
| 5 | \( 1 - 3.26T + 5T^{2} \) |
| 11 | \( 1 + 3.73iT - 11T^{2} \) |
| 13 | \( 1 - 1.00iT - 13T^{2} \) |
| 17 | \( 1 + 4.44T + 17T^{2} \) |
| 19 | \( 1 - 5.90T + 19T^{2} \) |
| 29 | \( 1 - 3.20T + 29T^{2} \) |
| 31 | \( 1 + 4.67iT - 31T^{2} \) |
| 37 | \( 1 + 0.741iT - 37T^{2} \) |
| 41 | \( 1 + 5.56iT - 41T^{2} \) |
| 43 | \( 1 - 2.01iT - 43T^{2} \) |
| 47 | \( 1 + 2.83iT - 47T^{2} \) |
| 53 | \( 1 - 5.48iT - 53T^{2} \) |
| 59 | \( 1 - 13.8iT - 59T^{2} \) |
| 61 | \( 1 + 13.7T + 61T^{2} \) |
| 67 | \( 1 + 14.4iT - 67T^{2} \) |
| 71 | \( 1 - 13.7T + 71T^{2} \) |
| 73 | \( 1 - 4.07iT - 73T^{2} \) |
| 79 | \( 1 - 6.11iT - 79T^{2} \) |
| 83 | \( 1 + 16.0T + 83T^{2} \) |
| 89 | \( 1 + 9.92T + 89T^{2} \) |
| 97 | \( 1 - 10.7T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.369537516005196719061451668052, −8.724436350484509939250243117789, −7.962250979603743682193281432136, −6.96287246187308643522522625275, −6.07125108503936924611603396482, −5.59867322799011906999053740622, −4.37631921257719827049555206975, −2.85942207045335663593818702469, −1.77920805407606082116732370685, −0.70090364211857850903011793116,
1.63483935956016531701477892880, 3.09406132287598911044813605890, 4.23377774637318763252467220395, 4.99980785655527359984246398247, 5.48099987010393805883527512559, 6.65613807258538307915780673905, 7.87609252452464360064079430647, 9.027857805560035941833784402241, 9.420696646396144278891289868203, 10.02725539504693039160543753385