L(s) = 1 | + (0.965 − 1.67i)3-s + (−0.866 + 0.5i)5-s + (0.965 − 0.258i)7-s + (−1.36 − 2.36i)9-s + 1.93i·15-s + (0.500 − 1.86i)21-s + (0.448 − 0.258i)23-s + (0.499 − 0.866i)25-s − 3.34·27-s − 29-s + (−0.707 + 0.707i)35-s + i·41-s + 0.517i·43-s + (2.36 + 1.36i)45-s + (0.707 + 1.22i)47-s + ⋯ |
L(s) = 1 | + (0.965 − 1.67i)3-s + (−0.866 + 0.5i)5-s + (0.965 − 0.258i)7-s + (−1.36 − 2.36i)9-s + 1.93i·15-s + (0.500 − 1.86i)21-s + (0.448 − 0.258i)23-s + (0.499 − 0.866i)25-s − 3.34·27-s − 29-s + (−0.707 + 0.707i)35-s + i·41-s + 0.517i·43-s + (2.36 + 1.36i)45-s + (0.707 + 1.22i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.134 + 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.134 + 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.292784751\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.292784751\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.866 - 0.5i)T \) |
| 7 | \( 1 + (-0.965 + 0.258i)T \) |
good | 3 | \( 1 + (-0.965 + 1.67i)T + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.448 + 0.258i)T + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + T + T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 - iT - T^{2} \) |
| 43 | \( 1 - 0.517iT - T^{2} \) |
| 47 | \( 1 + (-0.707 - 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-1.67 - 0.965i)T + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 - 0.517T + T^{2} \) |
| 89 | \( 1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.554612858475464407520555476553, −8.554758898569440684140231908438, −8.068518890450694213545149675236, −7.39006648431917864079533645631, −6.88726062395558982027481415756, −5.85334316921964232122020023108, −4.36583385957494291518149300929, −3.29338415571379948530706807376, −2.37202897412894932319459079457, −1.18435111923841748470881495417,
2.13691421231013788083692136969, 3.42676679760767010258606071557, 4.07706761165233261892292319570, 4.93397630462943580967068106471, 5.47360517434381524862644284497, 7.38202914513482818187544225419, 8.059722833839157799642822654791, 8.785563386057990227058256233976, 9.193641455938302466386257994958, 10.20286602380315597405945158351