| L(s) = 1 | + (−0.5 − 0.866i)5-s − 7-s + (−0.5 − 0.866i)9-s + (−0.5 + 0.866i)11-s − 13-s + (−0.5 − 0.866i)19-s + (−0.5 − 0.866i)23-s + (−0.499 + 0.866i)25-s + (0.5 + 0.866i)35-s + (0.5 + 0.866i)37-s − 41-s + (−0.499 + 0.866i)45-s + (−0.5 − 0.866i)47-s + 49-s + (0.5 − 0.866i)53-s + ⋯ |
| L(s) = 1 | + (−0.5 − 0.866i)5-s − 7-s + (−0.5 − 0.866i)9-s + (−0.5 + 0.866i)11-s − 13-s + (−0.5 − 0.866i)19-s + (−0.5 − 0.866i)23-s + (−0.499 + 0.866i)25-s + (0.5 + 0.866i)35-s + (0.5 + 0.866i)37-s − 41-s + (−0.499 + 0.866i)45-s + (−0.5 − 0.866i)47-s + 49-s + (0.5 − 0.866i)53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.895 + 0.444i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.895 + 0.444i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3464367166\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.3464367166\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.5 + 0.866i)T \) |
| 7 | \( 1 + T \) |
| good | 3 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + T + T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + T + T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (-1 + 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.709131831028727635959237003598, −8.882849182052160919112437351062, −8.168754301810118842031985637516, −7.08758870790647450891163429356, −6.46173429197694358847415361560, −5.26396318446279451999506202372, −4.50105680923516349541086778094, −3.44798369180119781821639867289, −2.32529432360541342104995221585, −0.28562293778862235321863141056,
2.37962729814885197046488653328, 3.14245799167679114699953558451, 4.11616225416496281670907335725, 5.48047720458334428457373047470, 6.12500199597531378076261120364, 7.19385487108510001187299243654, 7.81078384865179824066837297089, 8.627004750211032363627211464254, 9.783567556443048594106761603668, 10.36763588970957441546389593178