L(s) = 1 | + (1.53 − 1.53i)3-s + (−1.95 + 1.08i)5-s + (0.707 + 0.707i)7-s − 1.71i·9-s − 6.00i·11-s + (4.71 + 4.71i)13-s + (−1.34 + 4.66i)15-s + (−0.423 + 0.423i)17-s + 4.50·19-s + 2.17·21-s + (0.730 − 0.730i)23-s + (2.66 − 4.22i)25-s + (1.97 + 1.97i)27-s − 3.40i·29-s − 8.48i·31-s + ⋯ |
L(s) = 1 | + (0.886 − 0.886i)3-s + (−0.875 + 0.483i)5-s + (0.267 + 0.267i)7-s − 0.570i·9-s − 1.80i·11-s + (1.30 + 1.30i)13-s + (−0.347 + 1.20i)15-s + (−0.102 + 0.102i)17-s + 1.03·19-s + 0.473·21-s + (0.152 − 0.152i)23-s + (0.533 − 0.845i)25-s + (0.380 + 0.380i)27-s − 0.632i·29-s − 1.52i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.671 + 0.741i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.671 + 0.741i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.073718019\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.073718019\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (1.95 - 1.08i)T \) |
| 7 | \( 1 + (-0.707 - 0.707i)T \) |
good | 3 | \( 1 + (-1.53 + 1.53i)T - 3iT^{2} \) |
| 11 | \( 1 + 6.00iT - 11T^{2} \) |
| 13 | \( 1 + (-4.71 - 4.71i)T + 13iT^{2} \) |
| 17 | \( 1 + (0.423 - 0.423i)T - 17iT^{2} \) |
| 19 | \( 1 - 4.50T + 19T^{2} \) |
| 23 | \( 1 + (-0.730 + 0.730i)T - 23iT^{2} \) |
| 29 | \( 1 + 3.40iT - 29T^{2} \) |
| 31 | \( 1 + 8.48iT - 31T^{2} \) |
| 37 | \( 1 + (-4.06 + 4.06i)T - 37iT^{2} \) |
| 41 | \( 1 + 6.31T + 41T^{2} \) |
| 43 | \( 1 + (-0.484 + 0.484i)T - 43iT^{2} \) |
| 47 | \( 1 + (-3.48 - 3.48i)T + 47iT^{2} \) |
| 53 | \( 1 + (2.52 + 2.52i)T + 53iT^{2} \) |
| 59 | \( 1 - 4.52T + 59T^{2} \) |
| 61 | \( 1 - 6.61T + 61T^{2} \) |
| 67 | \( 1 + (-4.15 - 4.15i)T + 67iT^{2} \) |
| 71 | \( 1 - 7.67iT - 71T^{2} \) |
| 73 | \( 1 + (3.96 + 3.96i)T + 73iT^{2} \) |
| 79 | \( 1 + 13.0T + 79T^{2} \) |
| 83 | \( 1 + (0.553 - 0.553i)T - 83iT^{2} \) |
| 89 | \( 1 - 12.2iT - 89T^{2} \) |
| 97 | \( 1 + (-12.9 + 12.9i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.410054114016791609715759786805, −8.529247068094775156316661422931, −8.243404678314179172909685319686, −7.37565652652980610427526159386, −6.52381224242864683198684650546, −5.71742478447260332853816560959, −4.12021120084151600136935404118, −3.37384529852581959588387806928, −2.40571152262533066507346693093, −1.01999216778232218896870137669,
1.29652286493278055729921236299, 3.03996628956439259283296432829, 3.71816615629013237561710390059, 4.61681759804106258966297405434, 5.28231894086744327152134819915, 6.87361635883791957111612569904, 7.67808347934720532835341208557, 8.405156260150053122335131117744, 9.028164543489258596451915975202, 9.951926356614345184541389560551