Properties

Label 2-1120-1.1-c3-0-18
Degree $2$
Conductor $1120$
Sign $1$
Analytic cond. $66.0821$
Root an. cond. $8.12909$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.87·3-s − 5·5-s − 7·7-s − 3.25·9-s − 49.7·11-s + 42.7·13-s − 24.3·15-s + 27.2·17-s + 97.8·19-s − 34.1·21-s + 59.1·23-s + 25·25-s − 147.·27-s − 99.2·29-s − 127.·31-s − 242.·33-s + 35·35-s − 47.9·37-s + 208.·39-s + 169.·41-s + 436.·43-s + 16.2·45-s + 427.·47-s + 49·49-s + 132.·51-s + 406.·53-s + 248.·55-s + ⋯
L(s)  = 1  + 0.937·3-s − 0.447·5-s − 0.377·7-s − 0.120·9-s − 1.36·11-s + 0.912·13-s − 0.419·15-s + 0.388·17-s + 1.18·19-s − 0.354·21-s + 0.536·23-s + 0.200·25-s − 1.05·27-s − 0.635·29-s − 0.738·31-s − 1.27·33-s + 0.169·35-s − 0.212·37-s + 0.856·39-s + 0.647·41-s + 1.54·43-s + 0.0538·45-s + 1.32·47-s + 0.142·49-s + 0.364·51-s + 1.05·53-s + 0.609·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1120\)    =    \(2^{5} \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(66.0821\)
Root analytic conductor: \(8.12909\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1120,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.273170950\)
\(L(\frac12)\) \(\approx\) \(2.273170950\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + 5T \)
7 \( 1 + 7T \)
good3 \( 1 - 4.87T + 27T^{2} \)
11 \( 1 + 49.7T + 1.33e3T^{2} \)
13 \( 1 - 42.7T + 2.19e3T^{2} \)
17 \( 1 - 27.2T + 4.91e3T^{2} \)
19 \( 1 - 97.8T + 6.85e3T^{2} \)
23 \( 1 - 59.1T + 1.21e4T^{2} \)
29 \( 1 + 99.2T + 2.43e4T^{2} \)
31 \( 1 + 127.T + 2.97e4T^{2} \)
37 \( 1 + 47.9T + 5.06e4T^{2} \)
41 \( 1 - 169.T + 6.89e4T^{2} \)
43 \( 1 - 436.T + 7.95e4T^{2} \)
47 \( 1 - 427.T + 1.03e5T^{2} \)
53 \( 1 - 406.T + 1.48e5T^{2} \)
59 \( 1 - 730.T + 2.05e5T^{2} \)
61 \( 1 + 463.T + 2.26e5T^{2} \)
67 \( 1 + 438.T + 3.00e5T^{2} \)
71 \( 1 + 421.T + 3.57e5T^{2} \)
73 \( 1 - 1.11e3T + 3.89e5T^{2} \)
79 \( 1 + 845.T + 4.93e5T^{2} \)
83 \( 1 - 423.T + 5.71e5T^{2} \)
89 \( 1 - 1.57e3T + 7.04e5T^{2} \)
97 \( 1 - 1.46e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.184443276235200096365050445162, −8.747620224783280107248042040077, −7.62476954336811440768681341562, −7.47928136996167211723294242673, −5.94869034884034967922163348373, −5.25542405177880852735104005213, −3.87239335051527427493743268113, −3.18107045031148691504478025329, −2.32987824546671305267405963758, −0.73528490211475180695505870719, 0.73528490211475180695505870719, 2.32987824546671305267405963758, 3.18107045031148691504478025329, 3.87239335051527427493743268113, 5.25542405177880852735104005213, 5.94869034884034967922163348373, 7.47928136996167211723294242673, 7.62476954336811440768681341562, 8.747620224783280107248042040077, 9.184443276235200096365050445162

Graph of the $Z$-function along the critical line