Properties

Label 2-1120-1.1-c3-0-17
Degree $2$
Conductor $1120$
Sign $1$
Analytic cond. $66.0821$
Root an. cond. $8.12909$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.79·3-s − 5·5-s + 7·7-s − 23.7·9-s + 32.2·11-s − 57.4·13-s − 8.95·15-s − 117.·17-s + 92.8·19-s + 12.5·21-s − 37.1·23-s + 25·25-s − 90.9·27-s + 254.·29-s + 202.·31-s + 57.7·33-s − 35·35-s + 58.1·37-s − 102.·39-s + 114.·41-s − 90.4·43-s + 118.·45-s + 273.·47-s + 49·49-s − 209.·51-s − 524.·53-s − 161.·55-s + ⋯
L(s)  = 1  + 0.344·3-s − 0.447·5-s + 0.377·7-s − 0.881·9-s + 0.883·11-s − 1.22·13-s − 0.154·15-s − 1.67·17-s + 1.12·19-s + 0.130·21-s − 0.337·23-s + 0.200·25-s − 0.648·27-s + 1.62·29-s + 1.17·31-s + 0.304·33-s − 0.169·35-s + 0.258·37-s − 0.422·39-s + 0.436·41-s − 0.320·43-s + 0.394·45-s + 0.847·47-s + 0.142·49-s − 0.575·51-s − 1.36·53-s − 0.394·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1120\)    =    \(2^{5} \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(66.0821\)
Root analytic conductor: \(8.12909\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1120,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.834615662\)
\(L(\frac12)\) \(\approx\) \(1.834615662\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + 5T \)
7 \( 1 - 7T \)
good3 \( 1 - 1.79T + 27T^{2} \)
11 \( 1 - 32.2T + 1.33e3T^{2} \)
13 \( 1 + 57.4T + 2.19e3T^{2} \)
17 \( 1 + 117.T + 4.91e3T^{2} \)
19 \( 1 - 92.8T + 6.85e3T^{2} \)
23 \( 1 + 37.1T + 1.21e4T^{2} \)
29 \( 1 - 254.T + 2.43e4T^{2} \)
31 \( 1 - 202.T + 2.97e4T^{2} \)
37 \( 1 - 58.1T + 5.06e4T^{2} \)
41 \( 1 - 114.T + 6.89e4T^{2} \)
43 \( 1 + 90.4T + 7.95e4T^{2} \)
47 \( 1 - 273.T + 1.03e5T^{2} \)
53 \( 1 + 524.T + 1.48e5T^{2} \)
59 \( 1 - 601.T + 2.05e5T^{2} \)
61 \( 1 - 141.T + 2.26e5T^{2} \)
67 \( 1 + 565.T + 3.00e5T^{2} \)
71 \( 1 - 676.T + 3.57e5T^{2} \)
73 \( 1 - 28.7T + 3.89e5T^{2} \)
79 \( 1 + 309.T + 4.93e5T^{2} \)
83 \( 1 - 370.T + 5.71e5T^{2} \)
89 \( 1 + 325.T + 7.04e5T^{2} \)
97 \( 1 - 979.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.318443143058236882360766471751, −8.628850716272796374312746394731, −7.912971811132990587701850466942, −7.00553726706745106498633284335, −6.19609972656086473922367638086, −4.96555717245561156522584272655, −4.29506470806323418591219379078, −3.07176697426904151239776854383, −2.21480590826556521964788139768, −0.67767005772265348533043952480, 0.67767005772265348533043952480, 2.21480590826556521964788139768, 3.07176697426904151239776854383, 4.29506470806323418591219379078, 4.96555717245561156522584272655, 6.19609972656086473922367638086, 7.00553726706745106498633284335, 7.912971811132990587701850466942, 8.628850716272796374312746394731, 9.318443143058236882360766471751

Graph of the $Z$-function along the critical line