Properties

Label 2-1120-1.1-c3-0-12
Degree $2$
Conductor $1120$
Sign $1$
Analytic cond. $66.0821$
Root an. cond. $8.12909$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.629·3-s − 5·5-s + 7·7-s − 26.6·9-s − 18.3·11-s + 57.3·13-s + 3.14·15-s − 28.2·17-s − 86.2·19-s − 4.40·21-s + 87.2·23-s + 25·25-s + 33.7·27-s − 97.3·29-s − 144.·31-s + 11.5·33-s − 35·35-s + 322.·37-s − 36.1·39-s − 152.·41-s − 341.·43-s + 133.·45-s + 471.·47-s + 49·49-s + 17.8·51-s − 144.·53-s + 91.7·55-s + ⋯
L(s)  = 1  − 0.121·3-s − 0.447·5-s + 0.377·7-s − 0.985·9-s − 0.502·11-s + 1.22·13-s + 0.0542·15-s − 0.403·17-s − 1.04·19-s − 0.0458·21-s + 0.790·23-s + 0.200·25-s + 0.240·27-s − 0.623·29-s − 0.837·31-s + 0.0609·33-s − 0.169·35-s + 1.43·37-s − 0.148·39-s − 0.581·41-s − 1.21·43-s + 0.440·45-s + 1.46·47-s + 0.142·49-s + 0.0488·51-s − 0.374·53-s + 0.224·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1120\)    =    \(2^{5} \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(66.0821\)
Root analytic conductor: \(8.12909\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1120,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.407954931\)
\(L(\frac12)\) \(\approx\) \(1.407954931\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + 5T \)
7 \( 1 - 7T \)
good3 \( 1 + 0.629T + 27T^{2} \)
11 \( 1 + 18.3T + 1.33e3T^{2} \)
13 \( 1 - 57.3T + 2.19e3T^{2} \)
17 \( 1 + 28.2T + 4.91e3T^{2} \)
19 \( 1 + 86.2T + 6.85e3T^{2} \)
23 \( 1 - 87.2T + 1.21e4T^{2} \)
29 \( 1 + 97.3T + 2.43e4T^{2} \)
31 \( 1 + 144.T + 2.97e4T^{2} \)
37 \( 1 - 322.T + 5.06e4T^{2} \)
41 \( 1 + 152.T + 6.89e4T^{2} \)
43 \( 1 + 341.T + 7.95e4T^{2} \)
47 \( 1 - 471.T + 1.03e5T^{2} \)
53 \( 1 + 144.T + 1.48e5T^{2} \)
59 \( 1 - 740.T + 2.05e5T^{2} \)
61 \( 1 + 681.T + 2.26e5T^{2} \)
67 \( 1 - 983.T + 3.00e5T^{2} \)
71 \( 1 + 271.T + 3.57e5T^{2} \)
73 \( 1 - 363.T + 3.89e5T^{2} \)
79 \( 1 + 135.T + 4.93e5T^{2} \)
83 \( 1 - 1.37e3T + 5.71e5T^{2} \)
89 \( 1 + 1.00e3T + 7.04e5T^{2} \)
97 \( 1 + 978.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.248122400497556690577326945674, −8.540782147634410143698575178456, −8.012528085481208402100395123035, −6.92736385050583236275078335066, −6.03089039524881865243839603868, −5.22719486275794072442957874961, −4.18243955903396944287750225838, −3.22618757011526453473474669368, −2.07119750145928598415624579099, −0.60742284324802278546523222153, 0.60742284324802278546523222153, 2.07119750145928598415624579099, 3.22618757011526453473474669368, 4.18243955903396944287750225838, 5.22719486275794072442957874961, 6.03089039524881865243839603868, 6.92736385050583236275078335066, 8.012528085481208402100395123035, 8.540782147634410143698575178456, 9.248122400497556690577326945674

Graph of the $Z$-function along the critical line