L(s) = 1 | + (−13.7 − 23.7i)3-s + (1.65 + 0.953i)5-s + (62.6 + 113. i)7-s + (−254. + 440. i)9-s + (237. − 137. i)11-s + 886. i·13-s − 52.2i·15-s + (−746. + 431. i)17-s + (609. − 1.05e3i)19-s + (1.83e3 − 3.04e3i)21-s + (2.95e3 + 1.70e3i)23-s + (−1.56e3 − 2.70e3i)25-s + 7.30e3·27-s + 7.55e3·29-s + (−1.62e3 − 2.82e3i)31-s + ⋯ |
L(s) = 1 | + (−0.879 − 1.52i)3-s + (0.0295 + 0.0170i)5-s + (0.482 + 0.875i)7-s + (−1.04 + 1.81i)9-s + (0.592 − 0.342i)11-s + 1.45i·13-s − 0.0600i·15-s + (−0.626 + 0.361i)17-s + (0.387 − 0.670i)19-s + (0.909 − 1.50i)21-s + (1.16 + 0.671i)23-s + (−0.499 − 0.865i)25-s + 1.92·27-s + 1.66·29-s + (−0.304 − 0.527i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.989 + 0.145i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.989 + 0.145i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(1.315071408\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.315071408\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (-62.6 - 113. i)T \) |
good | 3 | \( 1 + (13.7 + 23.7i)T + (-121.5 + 210. i)T^{2} \) |
| 5 | \( 1 + (-1.65 - 0.953i)T + (1.56e3 + 2.70e3i)T^{2} \) |
| 11 | \( 1 + (-237. + 137. i)T + (8.05e4 - 1.39e5i)T^{2} \) |
| 13 | \( 1 - 886. iT - 3.71e5T^{2} \) |
| 17 | \( 1 + (746. - 431. i)T + (7.09e5 - 1.22e6i)T^{2} \) |
| 19 | \( 1 + (-609. + 1.05e3i)T + (-1.23e6 - 2.14e6i)T^{2} \) |
| 23 | \( 1 + (-2.95e3 - 1.70e3i)T + (3.21e6 + 5.57e6i)T^{2} \) |
| 29 | \( 1 - 7.55e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + (1.62e3 + 2.82e3i)T + (-1.43e7 + 2.47e7i)T^{2} \) |
| 37 | \( 1 + (-516. + 895. i)T + (-3.46e7 - 6.00e7i)T^{2} \) |
| 41 | \( 1 - 9.64e3iT - 1.15e8T^{2} \) |
| 43 | \( 1 - 1.30e4iT - 1.47e8T^{2} \) |
| 47 | \( 1 + (-375. + 650. i)T + (-1.14e8 - 1.98e8i)T^{2} \) |
| 53 | \( 1 + (-1.09e4 - 1.90e4i)T + (-2.09e8 + 3.62e8i)T^{2} \) |
| 59 | \( 1 + (2.10e4 + 3.64e4i)T + (-3.57e8 + 6.19e8i)T^{2} \) |
| 61 | \( 1 + (-1.89e4 - 1.09e4i)T + (4.22e8 + 7.31e8i)T^{2} \) |
| 67 | \( 1 + (-4.61e4 + 2.66e4i)T + (6.75e8 - 1.16e9i)T^{2} \) |
| 71 | \( 1 - 6.92e4iT - 1.80e9T^{2} \) |
| 73 | \( 1 + (-5.62e4 + 3.24e4i)T + (1.03e9 - 1.79e9i)T^{2} \) |
| 79 | \( 1 + (2.56e4 + 1.48e4i)T + (1.53e9 + 2.66e9i)T^{2} \) |
| 83 | \( 1 + 1.74e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + (-6.65e3 - 3.84e3i)T + (2.79e9 + 4.83e9i)T^{2} \) |
| 97 | \( 1 - 1.51e5iT - 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.50126985659255772867500119607, −11.59814437557963908387489231743, −11.22960239811456951823749938082, −9.222685644856070755941487833713, −8.142246262911929296485023716756, −6.82416747157222908658928971895, −6.16543900857018626387268104430, −4.81043880190885020091545727077, −2.31979868710772600020882869310, −1.12342035663346243961800146109,
0.68545717933090968692636984685, 3.46427334648967526913359717387, 4.60867634977270900234173261660, 5.50164092454384199132329586919, 6.99788712991323676505594655499, 8.612596545696566453279837014198, 9.889147921075188235314701428776, 10.55559126035670139822331831160, 11.33162769860460059513944548556, 12.46300575113670214261653414182