L(s) = 1 | + (−3.33 − 5.76i)3-s + (0.990 + 0.571i)5-s + (129. − 2.46i)7-s + (99.3 − 172. i)9-s + (−510. + 294. i)11-s + 480. i·13-s − 7.61i·15-s + (1.80e3 − 1.04e3i)17-s + (972. − 1.68e3i)19-s + (−445. − 739. i)21-s + (−729. − 421. i)23-s + (−1.56e3 − 2.70e3i)25-s − 2.94e3·27-s + 8.11e3·29-s + (−3.79e3 − 6.57e3i)31-s + ⋯ |
L(s) = 1 | + (−0.213 − 0.370i)3-s + (0.0177 + 0.0102i)5-s + (0.999 − 0.0190i)7-s + (0.408 − 0.707i)9-s + (−1.27 + 0.734i)11-s + 0.788i·13-s − 0.00874i·15-s + (1.51 − 0.873i)17-s + (0.617 − 1.07i)19-s + (−0.220 − 0.365i)21-s + (−0.287 − 0.166i)23-s + (−0.499 − 0.865i)25-s − 0.776·27-s + 1.79·29-s + (−0.709 − 1.22i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.403 + 0.914i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.403 + 0.914i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(1.808948333\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.808948333\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (-129. + 2.46i)T \) |
good | 3 | \( 1 + (3.33 + 5.76i)T + (-121.5 + 210. i)T^{2} \) |
| 5 | \( 1 + (-0.990 - 0.571i)T + (1.56e3 + 2.70e3i)T^{2} \) |
| 11 | \( 1 + (510. - 294. i)T + (8.05e4 - 1.39e5i)T^{2} \) |
| 13 | \( 1 - 480. iT - 3.71e5T^{2} \) |
| 17 | \( 1 + (-1.80e3 + 1.04e3i)T + (7.09e5 - 1.22e6i)T^{2} \) |
| 19 | \( 1 + (-972. + 1.68e3i)T + (-1.23e6 - 2.14e6i)T^{2} \) |
| 23 | \( 1 + (729. + 421. i)T + (3.21e6 + 5.57e6i)T^{2} \) |
| 29 | \( 1 - 8.11e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + (3.79e3 + 6.57e3i)T + (-1.43e7 + 2.47e7i)T^{2} \) |
| 37 | \( 1 + (-4.79e3 + 8.29e3i)T + (-3.46e7 - 6.00e7i)T^{2} \) |
| 41 | \( 1 + 9.68e3iT - 1.15e8T^{2} \) |
| 43 | \( 1 + 4.32e3iT - 1.47e8T^{2} \) |
| 47 | \( 1 + (3.12e3 - 5.41e3i)T + (-1.14e8 - 1.98e8i)T^{2} \) |
| 53 | \( 1 + (-3.69e3 - 6.39e3i)T + (-2.09e8 + 3.62e8i)T^{2} \) |
| 59 | \( 1 + (-1.81e4 - 3.15e4i)T + (-3.57e8 + 6.19e8i)T^{2} \) |
| 61 | \( 1 + (-273. - 157. i)T + (4.22e8 + 7.31e8i)T^{2} \) |
| 67 | \( 1 + (2.39e4 - 1.38e4i)T + (6.75e8 - 1.16e9i)T^{2} \) |
| 71 | \( 1 + 3.14e4iT - 1.80e9T^{2} \) |
| 73 | \( 1 + (6.00e4 - 3.46e4i)T + (1.03e9 - 1.79e9i)T^{2} \) |
| 79 | \( 1 + (-8.04e4 - 4.64e4i)T + (1.53e9 + 2.66e9i)T^{2} \) |
| 83 | \( 1 - 2.43e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + (-1.10e4 - 6.40e3i)T + (2.79e9 + 4.83e9i)T^{2} \) |
| 97 | \( 1 - 9.37e4iT - 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.28357419693937277588999853189, −11.70103213217379095510934105093, −10.37501832573367980390800300577, −9.353613731325634877855982978410, −7.85728429094650940647966155104, −7.11373469801287568422677728071, −5.54594295438506597283419145532, −4.38411312463621066321733604517, −2.40446194573021934818092658982, −0.78499043359460808974721863682,
1.39854312121743040601634073757, 3.27672318000133519819730620205, 4.98799403920849600858442075180, 5.69504649104032744227513432805, 7.83854574369979735509742263612, 8.123918685269502382310769886494, 10.11840530693980818529338607070, 10.55441574510027435776425167151, 11.73609537924674771040441393764, 12.89450354628036265626639383617