L(s) = 1 | + (−1 + i)2-s − 2i·4-s + (2.44 − 2.44i)5-s + (−1 − 2.44i)7-s + (2 + 2i)8-s + 3i·9-s + 4.89i·10-s + (1 − i)11-s + (2.44 + 2.44i)13-s + (3.44 + 1.44i)14-s − 4·16-s − 4.89i·17-s + (−3 − 3i)18-s + (−4.89 + 4.89i)19-s + (−4.89 − 4.89i)20-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)2-s − i·4-s + (1.09 − 1.09i)5-s + (−0.377 − 0.925i)7-s + (0.707 + 0.707i)8-s + i·9-s + 1.54i·10-s + (0.301 − 0.301i)11-s + (0.679 + 0.679i)13-s + (0.921 + 0.387i)14-s − 16-s − 1.18i·17-s + (−0.707 − 0.707i)18-s + (−1.12 + 1.12i)19-s + (−1.09 − 1.09i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.00510i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 + 0.00510i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.849818 - 0.00216805i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.849818 - 0.00216805i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1 - i)T \) |
| 7 | \( 1 + (1 + 2.44i)T \) |
good | 3 | \( 1 - 3iT^{2} \) |
| 5 | \( 1 + (-2.44 + 2.44i)T - 5iT^{2} \) |
| 11 | \( 1 + (-1 + i)T - 11iT^{2} \) |
| 13 | \( 1 + (-2.44 - 2.44i)T + 13iT^{2} \) |
| 17 | \( 1 + 4.89iT - 17T^{2} \) |
| 19 | \( 1 + (4.89 - 4.89i)T - 19iT^{2} \) |
| 23 | \( 1 - 4T + 23T^{2} \) |
| 29 | \( 1 + (3 - 3i)T - 29iT^{2} \) |
| 31 | \( 1 + 4.89T + 31T^{2} \) |
| 37 | \( 1 + (-5 - 5i)T + 37iT^{2} \) |
| 41 | \( 1 + 4.89T + 41T^{2} \) |
| 43 | \( 1 + (5 - 5i)T - 43iT^{2} \) |
| 47 | \( 1 - 4.89T + 47T^{2} \) |
| 53 | \( 1 + (1 + i)T + 53iT^{2} \) |
| 59 | \( 1 + (-4.89 - 4.89i)T + 59iT^{2} \) |
| 61 | \( 1 + (2.44 + 2.44i)T + 61iT^{2} \) |
| 67 | \( 1 + (-5 - 5i)T + 67iT^{2} \) |
| 71 | \( 1 - 2T + 71T^{2} \) |
| 73 | \( 1 + 9.79T + 73T^{2} \) |
| 79 | \( 1 + 4iT - 79T^{2} \) |
| 83 | \( 1 - 83iT^{2} \) |
| 89 | \( 1 + 89T^{2} \) |
| 97 | \( 1 + 4.89iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.63885620049263382910389163956, −13.08003031205074378865508171434, −11.19012775524523305971273191730, −10.16610139543642053796701342919, −9.259888402126371369821014914997, −8.351261718427381332149867646789, −6.98771897017817465245209420384, −5.79975670349792459293200198069, −4.63629604979633582067592256342, −1.53789424338446233516979701597,
2.22439406821665087791809461871, 3.51127533700140026182552425123, 6.00918592405223275502832665131, 6.87116364204424014624184509803, 8.679610662984185781541189889030, 9.436737434407069834313449213110, 10.44710081256548129672504128737, 11.28000819759667251586514387054, 12.62408756927549227960372761916, 13.24073753485138955750101158787