L(s) = 1 | + (−1.32 − 0.5i)2-s + (1.50 + 1.32i)4-s + 2.64·7-s + (−1.32 − 2.50i)8-s + 3i·9-s + (4.64 − 4.64i)11-s + (−3.50 − 1.32i)14-s + (0.500 + 3.96i)16-s + (1.5 − 3.96i)18-s + (−8.46 + 3.82i)22-s − 8·23-s + 5i·25-s + (3.96 + 3.50i)28-s + (−4.29 + 4.29i)29-s + (1.32 − 5.50i)32-s + ⋯ |
L(s) = 1 | + (−0.935 − 0.353i)2-s + (0.750 + 0.661i)4-s + 0.999·7-s + (−0.467 − 0.883i)8-s + i·9-s + (1.40 − 1.40i)11-s + (−0.935 − 0.353i)14-s + (0.125 + 0.992i)16-s + (0.353 − 0.935i)18-s + (−1.80 + 0.815i)22-s − 1.66·23-s + i·25-s + (0.749 + 0.661i)28-s + (−0.796 + 0.796i)29-s + (0.233 − 0.972i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.964 + 0.264i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.964 + 0.264i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.779537 - 0.104838i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.779537 - 0.104838i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.32 + 0.5i)T \) |
| 7 | \( 1 - 2.64T \) |
good | 3 | \( 1 - 3iT^{2} \) |
| 5 | \( 1 - 5iT^{2} \) |
| 11 | \( 1 + (-4.64 + 4.64i)T - 11iT^{2} \) |
| 13 | \( 1 + 13iT^{2} \) |
| 17 | \( 1 - 17T^{2} \) |
| 19 | \( 1 - 19iT^{2} \) |
| 23 | \( 1 + 8T + 23T^{2} \) |
| 29 | \( 1 + (4.29 - 4.29i)T - 29iT^{2} \) |
| 31 | \( 1 + 31T^{2} \) |
| 37 | \( 1 + (8.29 + 8.29i)T + 37iT^{2} \) |
| 41 | \( 1 + 41T^{2} \) |
| 43 | \( 1 + (-3.35 + 3.35i)T - 43iT^{2} \) |
| 47 | \( 1 + 47T^{2} \) |
| 53 | \( 1 + (-0.291 - 0.291i)T + 53iT^{2} \) |
| 59 | \( 1 + 59iT^{2} \) |
| 61 | \( 1 + 61iT^{2} \) |
| 67 | \( 1 + (5.93 + 5.93i)T + 67iT^{2} \) |
| 71 | \( 1 + 5.29T + 71T^{2} \) |
| 73 | \( 1 + 73T^{2} \) |
| 79 | \( 1 - 8iT - 79T^{2} \) |
| 83 | \( 1 - 83iT^{2} \) |
| 89 | \( 1 + 89T^{2} \) |
| 97 | \( 1 - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.66550408696699066261985184020, −12.14689701557299283862467982082, −11.26302580361987185724281338319, −10.64081692189038561800590858750, −9.144358280335224860950406053715, −8.337932224675408309894902133446, −7.30320941447478430103971355842, −5.73476959588001284074065986455, −3.77686020842783578524989495642, −1.75059686069270978242917182210,
1.73815702022737060387468509209, 4.31814910027189803742301917561, 6.09843626077197207747919334374, 7.13597810339420375884779245306, 8.310202059027090035321052854047, 9.388457229823937646020779570282, 10.20931246479493097671327371609, 11.73769192336234030652554216834, 12.08326454902218118248382877410, 14.15327935312368531648856410960