L(s) = 1 | + (−0.482 + 1.32i)2-s + (0.449 − 1.67i)3-s + (−1.53 − 1.28i)4-s + (0.731 − 0.195i)5-s + (2.01 + 1.40i)6-s + (2.52 + 0.800i)7-s + (2.44 − 1.42i)8-s + (−0.0183 − 0.0105i)9-s + (−0.0923 + 1.06i)10-s + (1.18 − 4.42i)11-s + (−2.84 + 1.99i)12-s + (−2.89 + 2.89i)13-s + (−2.28 + 2.96i)14-s − 1.31i·15-s + (0.708 + 3.93i)16-s + (−2.28 + 1.31i)17-s + ⋯ |
L(s) = 1 | + (−0.341 + 0.940i)2-s + (0.259 − 0.969i)3-s + (−0.767 − 0.641i)4-s + (0.326 − 0.0875i)5-s + (0.822 + 0.574i)6-s + (0.953 + 0.302i)7-s + (0.864 − 0.502i)8-s + (−0.00611 − 0.00353i)9-s + (−0.0291 + 0.337i)10-s + (0.357 − 1.33i)11-s + (−0.820 + 0.577i)12-s + (−0.803 + 0.803i)13-s + (−0.609 + 0.792i)14-s − 0.339i·15-s + (0.177 + 0.984i)16-s + (−0.554 + 0.319i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.990 - 0.136i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.990 - 0.136i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.993554 + 0.0679694i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.993554 + 0.0679694i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.482 - 1.32i)T \) |
| 7 | \( 1 + (-2.52 - 0.800i)T \) |
good | 3 | \( 1 + (-0.449 + 1.67i)T + (-2.59 - 1.5i)T^{2} \) |
| 5 | \( 1 + (-0.731 + 0.195i)T + (4.33 - 2.5i)T^{2} \) |
| 11 | \( 1 + (-1.18 + 4.42i)T + (-9.52 - 5.5i)T^{2} \) |
| 13 | \( 1 + (2.89 - 2.89i)T - 13iT^{2} \) |
| 17 | \( 1 + (2.28 - 1.31i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (5.38 - 1.44i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (-1.01 + 1.75i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (0.209 + 0.209i)T + 29iT^{2} \) |
| 31 | \( 1 + (-3.33 - 5.76i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-1.02 - 3.82i)T + (-32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + 5.04T + 41T^{2} \) |
| 43 | \( 1 + (3.79 + 3.79i)T + 43iT^{2} \) |
| 47 | \( 1 + (2.53 - 4.39i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-10.7 - 2.87i)T + (45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (5.23 + 1.40i)T + (51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (1.56 + 5.84i)T + (-52.8 + 30.5i)T^{2} \) |
| 67 | \( 1 + (-9.24 - 2.47i)T + (58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + 7.25T + 71T^{2} \) |
| 73 | \( 1 + (-3.29 - 5.70i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (13.0 + 7.54i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (8.00 + 8.00i)T + 83iT^{2} \) |
| 89 | \( 1 + (-3.92 + 6.79i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 8.79iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.88304694103452157484914954930, −12.96415269225537393741011991479, −11.65517850024973222080049111836, −10.34115092030571815503653137687, −8.806922147966368396971997761440, −8.257902015416102658496114809587, −7.02120377473140807609128150031, −6.05511748360815698641777961540, −4.59946557186030420990163887564, −1.75239762659366014216310199979,
2.21974648510676056915956171564, 4.12438827462430677204807876988, 4.88465947833092085344389568133, 7.28890835559451645339350488055, 8.562043735139347604299241774608, 9.749369833029565864481409269276, 10.21631948264173061057405772801, 11.31752750835480677232718614508, 12.41634242559071530528600291811, 13.48414146867245101854223621190