L(s) = 1 | + (−1.33 − 0.463i)2-s + (−0.0661 + 0.246i)3-s + (1.56 + 1.23i)4-s + (−0.499 + 0.133i)5-s + (0.202 − 0.299i)6-s + (2.45 + 0.998i)7-s + (−1.52 − 2.38i)8-s + (2.54 + 1.46i)9-s + (0.729 + 0.0528i)10-s + (−0.563 + 2.10i)11-s + (−0.409 + 0.305i)12-s + (4.30 − 4.30i)13-s + (−2.81 − 2.47i)14-s − 0.132i·15-s + (0.927 + 3.89i)16-s + (2.04 − 1.18i)17-s + ⋯ |
L(s) = 1 | + (−0.944 − 0.327i)2-s + (−0.0381 + 0.142i)3-s + (0.784 + 0.619i)4-s + (−0.223 + 0.0598i)5-s + (0.0828 − 0.122i)6-s + (0.926 + 0.377i)7-s + (−0.538 − 0.842i)8-s + (0.847 + 0.489i)9-s + (0.230 + 0.0167i)10-s + (−0.169 + 0.634i)11-s + (−0.118 + 0.0882i)12-s + (1.19 − 1.19i)13-s + (−0.751 − 0.660i)14-s − 0.0341i·15-s + (0.231 + 0.972i)16-s + (0.495 − 0.286i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.993 - 0.112i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.993 - 0.112i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.759519 + 0.0429773i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.759519 + 0.0429773i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.33 + 0.463i)T \) |
| 7 | \( 1 + (-2.45 - 0.998i)T \) |
good | 3 | \( 1 + (0.0661 - 0.246i)T + (-2.59 - 1.5i)T^{2} \) |
| 5 | \( 1 + (0.499 - 0.133i)T + (4.33 - 2.5i)T^{2} \) |
| 11 | \( 1 + (0.563 - 2.10i)T + (-9.52 - 5.5i)T^{2} \) |
| 13 | \( 1 + (-4.30 + 4.30i)T - 13iT^{2} \) |
| 17 | \( 1 + (-2.04 + 1.18i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (5.07 - 1.35i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (1.78 - 3.08i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (5.02 + 5.02i)T + 29iT^{2} \) |
| 31 | \( 1 + (2.62 + 4.54i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (0.258 + 0.964i)T + (-32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 - 1.98T + 41T^{2} \) |
| 43 | \( 1 + (-2.39 - 2.39i)T + 43iT^{2} \) |
| 47 | \( 1 + (-4.72 + 8.17i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (0.557 + 0.149i)T + (45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (9.38 + 2.51i)T + (51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (0.948 + 3.54i)T + (-52.8 + 30.5i)T^{2} \) |
| 67 | \( 1 + (5.02 + 1.34i)T + (58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 - 9.49T + 71T^{2} \) |
| 73 | \( 1 + (4.24 + 7.34i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (1.71 + 0.988i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-0.925 - 0.925i)T + 83iT^{2} \) |
| 89 | \( 1 + (7.40 - 12.8i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 10.2iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.38143989983625290962862247592, −12.42449775901115907193191439566, −11.26695519302574139097710867780, −10.54211293392035388237947637416, −9.476719208095943134888344463245, −8.089579511086990414123097829627, −7.57592295132184029476462931587, −5.77026506562000188290276276557, −3.94384263475809262101186274097, −1.89450452524481684962074739661,
1.53999956482980380215640631443, 4.16084157025269060669534048200, 6.02879720436747195053115985838, 7.11704001086114068133252768249, 8.260269235655535406434901715358, 9.097287579647381335338746648399, 10.55150098313863054431749873377, 11.19441206240773003148787095492, 12.36542834270828669349860519791, 13.84762875577683328239981109726