L(s) = 1 | + (−1.40 − 0.164i)2-s + (−0.839 + 0.224i)3-s + (1.94 + 0.461i)4-s + (−3.16 − 0.847i)5-s + (1.21 − 0.177i)6-s + (0.654 − 2.56i)7-s + (−2.65 − 0.968i)8-s + (−1.94 + 1.12i)9-s + (4.30 + 1.71i)10-s + (−0.769 − 2.87i)11-s + (−1.73 + 0.0499i)12-s + (−3.63 − 3.63i)13-s + (−1.34 + 3.49i)14-s + 2.84·15-s + (3.57 + 1.79i)16-s + (−1.81 + 3.14i)17-s + ⋯ |
L(s) = 1 | + (−0.993 − 0.116i)2-s + (−0.484 + 0.129i)3-s + (0.972 + 0.230i)4-s + (−1.41 − 0.379i)5-s + (0.496 − 0.0726i)6-s + (0.247 − 0.968i)7-s + (−0.939 − 0.342i)8-s + (−0.648 + 0.374i)9-s + (1.36 + 0.540i)10-s + (−0.231 − 0.865i)11-s + (−0.501 + 0.0144i)12-s + (−1.00 − 1.00i)13-s + (−0.358 + 0.933i)14-s + 0.734·15-s + (0.893 + 0.449i)16-s + (−0.441 + 0.763i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.789 + 0.613i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.789 + 0.613i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0753860 - 0.219980i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0753860 - 0.219980i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.40 + 0.164i)T \) |
| 7 | \( 1 + (-0.654 + 2.56i)T \) |
good | 3 | \( 1 + (0.839 - 0.224i)T + (2.59 - 1.5i)T^{2} \) |
| 5 | \( 1 + (3.16 + 0.847i)T + (4.33 + 2.5i)T^{2} \) |
| 11 | \( 1 + (0.769 + 2.87i)T + (-9.52 + 5.5i)T^{2} \) |
| 13 | \( 1 + (3.63 + 3.63i)T + 13iT^{2} \) |
| 17 | \( 1 + (1.81 - 3.14i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.429 - 1.60i)T + (-16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (-5.33 + 3.08i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-5.10 - 5.10i)T + 29iT^{2} \) |
| 31 | \( 1 + (1.00 - 1.74i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (5.57 + 1.49i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + 3.71iT - 41T^{2} \) |
| 43 | \( 1 + (2.91 - 2.91i)T - 43iT^{2} \) |
| 47 | \( 1 + (5.06 + 8.77i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (0.986 + 3.68i)T + (-45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (-0.977 - 3.64i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (-1.75 + 6.54i)T + (-52.8 - 30.5i)T^{2} \) |
| 67 | \( 1 + (-5.88 + 1.57i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + 9.55iT - 71T^{2} \) |
| 73 | \( 1 + (-0.989 - 0.571i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-0.120 - 0.209i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (0.459 + 0.459i)T + 83iT^{2} \) |
| 89 | \( 1 + (3.76 - 2.17i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 6.80T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.82100170742981068292507611327, −11.87770620095612682207949170142, −10.88555133880445192128073890917, −10.45501937540091245393199021902, −8.538848752283682689791256405118, −8.027989461570045819804574107778, −6.86975382053626399233080118077, −5.06874256256644158814149320930, −3.34059042901607102705512413560, −0.35536607143618781339084826233,
2.70018096490040559913162750230, 4.93778882683667742399381127131, 6.64234852843095132066525244611, 7.46564465352441808648658817615, 8.656387554575693142841787173189, 9.635330298337427061603555778720, 11.25678926102441625620739766947, 11.65811117911733303294938361417, 12.34880492858744085125669241657, 14.55286627357507557068617551885