Properties

Label 2-112-112.101-c2-0-28
Degree $2$
Conductor $112$
Sign $-0.956 - 0.292i$
Analytic cond. $3.05177$
Root an. cond. $1.74693$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.550 − 1.92i)2-s + (−1.70 + 0.457i)3-s + (−3.39 − 2.11i)4-s + (−3.11 − 0.833i)5-s + (−0.0595 + 3.53i)6-s + (3.27 − 6.18i)7-s + (−5.93 + 5.36i)8-s + (−5.08 + 2.93i)9-s + (−3.31 + 5.52i)10-s + (−16.6 + 4.47i)11-s + (6.76 + 2.06i)12-s + (−4.48 − 4.48i)13-s + (−10.0 − 9.70i)14-s + 5.69·15-s + (7.04 + 14.3i)16-s + (7.15 + 4.13i)17-s + ⋯
L(s)  = 1  + (0.275 − 0.961i)2-s + (−0.569 + 0.152i)3-s + (−0.848 − 0.528i)4-s + (−0.622 − 0.166i)5-s + (−0.00993 + 0.589i)6-s + (0.468 − 0.883i)7-s + (−0.741 + 0.670i)8-s + (−0.564 + 0.326i)9-s + (−0.331 + 0.552i)10-s + (−1.51 + 0.406i)11-s + (0.564 + 0.171i)12-s + (−0.345 − 0.345i)13-s + (−0.720 − 0.693i)14-s + 0.379·15-s + (0.440 + 0.897i)16-s + (0.421 + 0.243i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.956 - 0.292i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.956 - 0.292i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(112\)    =    \(2^{4} \cdot 7\)
Sign: $-0.956 - 0.292i$
Analytic conductor: \(3.05177\)
Root analytic conductor: \(1.74693\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{112} (101, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 112,\ (\ :1),\ -0.956 - 0.292i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.0772448 + 0.515969i\)
\(L(\frac12)\) \(\approx\) \(0.0772448 + 0.515969i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.550 + 1.92i)T \)
7 \( 1 + (-3.27 + 6.18i)T \)
good3 \( 1 + (1.70 - 0.457i)T + (7.79 - 4.5i)T^{2} \)
5 \( 1 + (3.11 + 0.833i)T + (21.6 + 12.5i)T^{2} \)
11 \( 1 + (16.6 - 4.47i)T + (104. - 60.5i)T^{2} \)
13 \( 1 + (4.48 + 4.48i)T + 169iT^{2} \)
17 \( 1 + (-7.15 - 4.13i)T + (144.5 + 250. i)T^{2} \)
19 \( 1 + (-9.71 + 36.2i)T + (-312. - 180.5i)T^{2} \)
23 \( 1 + (-31.8 + 18.4i)T + (264.5 - 458. i)T^{2} \)
29 \( 1 + (10.7 - 10.7i)T - 841iT^{2} \)
31 \( 1 + (22.8 + 13.1i)T + (480.5 + 832. i)T^{2} \)
37 \( 1 + (12.1 - 45.3i)T + (-1.18e3 - 684.5i)T^{2} \)
41 \( 1 - 43.3T + 1.68e3T^{2} \)
43 \( 1 + (34.5 + 34.5i)T + 1.84e3iT^{2} \)
47 \( 1 + (3.29 - 1.90i)T + (1.10e3 - 1.91e3i)T^{2} \)
53 \( 1 + (16.3 - 4.38i)T + (2.43e3 - 1.40e3i)T^{2} \)
59 \( 1 + (-13.5 - 50.4i)T + (-3.01e3 + 1.74e3i)T^{2} \)
61 \( 1 + (-6.29 + 23.4i)T + (-3.22e3 - 1.86e3i)T^{2} \)
67 \( 1 + (-6.40 - 23.8i)T + (-3.88e3 + 2.24e3i)T^{2} \)
71 \( 1 - 19.3iT - 5.04e3T^{2} \)
73 \( 1 + (27.1 - 47.0i)T + (-2.66e3 - 4.61e3i)T^{2} \)
79 \( 1 + (-3.71 - 6.44i)T + (-3.12e3 + 5.40e3i)T^{2} \)
83 \( 1 + (99.9 + 99.9i)T + 6.88e3iT^{2} \)
89 \( 1 + (18.7 + 32.4i)T + (-3.96e3 + 6.85e3i)T^{2} \)
97 \( 1 + 181. iT - 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.78476734271506992861346608238, −11.52759695514490621962454423589, −10.91268643816671198007155658283, −10.11756807982713863543632629429, −8.546743645463941772111765682714, −7.38426232884458853106412374238, −5.28477523818688744651867986609, −4.62545547433776728357967355733, −2.83249013292065576673974570621, −0.36326389160786411539140843483, 3.31759036014682755715678214222, 5.25104521426136974926023766424, 5.78256927475467574810490839240, 7.43329811833402250313910727901, 8.180527991944977810194240014653, 9.433175226234495462367098579733, 11.10146412275777489925568626259, 12.03235627090611061345783741878, 12.85236153406689933224219789291, 14.23170841978915529728774313758

Graph of the $Z$-function along the critical line