L(s) = 1 | + (1.21 − 1.58i)2-s + (2.57 − 0.689i)3-s + (−1.04 − 3.86i)4-s + (5.82 + 1.56i)5-s + (2.03 − 4.92i)6-s + (1.48 + 6.84i)7-s + (−7.40 − 3.03i)8-s + (−1.65 + 0.956i)9-s + (9.56 − 7.35i)10-s + (−7.58 + 2.03i)11-s + (−5.34 − 9.20i)12-s + (−13.1 − 13.1i)13-s + (12.6 + 5.96i)14-s + 16.0·15-s + (−13.8 + 8.06i)16-s + (3.45 + 1.99i)17-s + ⋯ |
L(s) = 1 | + (0.607 − 0.794i)2-s + (0.857 − 0.229i)3-s + (−0.261 − 0.965i)4-s + (1.16 + 0.312i)5-s + (0.338 − 0.820i)6-s + (0.211 + 0.977i)7-s + (−0.925 − 0.379i)8-s + (−0.184 + 0.106i)9-s + (0.956 − 0.735i)10-s + (−0.689 + 0.184i)11-s + (−0.445 − 0.767i)12-s + (−1.00 − 1.00i)13-s + (0.904 + 0.426i)14-s + 1.07·15-s + (−0.863 + 0.504i)16-s + (0.203 + 0.117i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.457 + 0.889i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.457 + 0.889i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.06315 - 1.25843i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.06315 - 1.25843i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.21 + 1.58i)T \) |
| 7 | \( 1 + (-1.48 - 6.84i)T \) |
good | 3 | \( 1 + (-2.57 + 0.689i)T + (7.79 - 4.5i)T^{2} \) |
| 5 | \( 1 + (-5.82 - 1.56i)T + (21.6 + 12.5i)T^{2} \) |
| 11 | \( 1 + (7.58 - 2.03i)T + (104. - 60.5i)T^{2} \) |
| 13 | \( 1 + (13.1 + 13.1i)T + 169iT^{2} \) |
| 17 | \( 1 + (-3.45 - 1.99i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (0.217 - 0.810i)T + (-312. - 180.5i)T^{2} \) |
| 23 | \( 1 + (-4.14 + 2.39i)T + (264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (-3.85 + 3.85i)T - 841iT^{2} \) |
| 31 | \( 1 + (-17.1 - 9.92i)T + (480.5 + 832. i)T^{2} \) |
| 37 | \( 1 + (-15.7 + 58.8i)T + (-1.18e3 - 684.5i)T^{2} \) |
| 41 | \( 1 - 34.6T + 1.68e3T^{2} \) |
| 43 | \( 1 + (-54.0 - 54.0i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 + (55.3 - 31.9i)T + (1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 + (-47.3 + 12.6i)T + (2.43e3 - 1.40e3i)T^{2} \) |
| 59 | \( 1 + (4.49 + 16.7i)T + (-3.01e3 + 1.74e3i)T^{2} \) |
| 61 | \( 1 + (-30.3 + 113. i)T + (-3.22e3 - 1.86e3i)T^{2} \) |
| 67 | \( 1 + (-19.9 - 74.4i)T + (-3.88e3 + 2.24e3i)T^{2} \) |
| 71 | \( 1 + 117. iT - 5.04e3T^{2} \) |
| 73 | \( 1 + (3.92 - 6.78i)T + (-2.66e3 - 4.61e3i)T^{2} \) |
| 79 | \( 1 + (-26.6 - 46.2i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 + (48.3 + 48.3i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + (76.8 + 133. i)T + (-3.96e3 + 6.85e3i)T^{2} \) |
| 97 | \( 1 - 127. iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.08408473973694570136164151854, −12.55066673282486355372251137245, −11.10301503328901442464113480197, −10.00582878653696162749170346980, −9.213514978943787822970232334609, −7.88739074814927229016372887700, −5.98397658932304925589223730207, −5.12467821638692632900546273690, −2.84218963311975825880672907737, −2.23289638688786819242922961157,
2.61402076107405835189870280158, 4.25837339868290182783116085227, 5.49943677187450133202541883489, 6.88296428225818478082045345778, 8.036917841477135048287872366475, 9.160113815924382551933306007595, 10.03988052558867745252128090619, 11.72972768592494080457354636722, 13.11493758847739740411416681236, 13.80995539144069864909197821536