Properties

Label 2-110670-1.1-c1-0-22
Degree $2$
Conductor $110670$
Sign $1$
Analytic cond. $883.704$
Root an. cond. $29.7271$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 5-s + 6-s + 7-s + 8-s + 9-s + 10-s − 4·11-s + 12-s − 2·13-s + 14-s + 15-s + 16-s + 17-s + 18-s + 4·19-s + 20-s + 21-s − 4·22-s + 8·23-s + 24-s + 25-s − 2·26-s + 27-s + 28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s + 0.377·7-s + 0.353·8-s + 1/3·9-s + 0.316·10-s − 1.20·11-s + 0.288·12-s − 0.554·13-s + 0.267·14-s + 0.258·15-s + 1/4·16-s + 0.242·17-s + 0.235·18-s + 0.917·19-s + 0.223·20-s + 0.218·21-s − 0.852·22-s + 1.66·23-s + 0.204·24-s + 1/5·25-s − 0.392·26-s + 0.192·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 110670 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 110670 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(110670\)    =    \(2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31\)
Sign: $1$
Analytic conductor: \(883.704\)
Root analytic conductor: \(29.7271\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 110670,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(6.854682430\)
\(L(\frac12)\) \(\approx\) \(6.854682430\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 - T \)
7 \( 1 - T \)
17 \( 1 - T \)
31 \( 1 + T \)
good11 \( 1 + 4 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 - 10 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 - 10 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 + 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.68017142186039, −13.10464404638792, −12.85615738228401, −12.46683960089896, −11.63704726962211, −11.31662881774289, −10.73826672686368, −10.29469362412058, −9.639554702953989, −9.401891942077475, −8.620996410570280, −8.144196767658846, −7.541886544822074, −7.217238280127678, −6.742257566562262, −5.784566887400274, −5.506643723255510, −4.989996973633639, −4.505495832804927, −3.809448450756095, −3.075102800879225, −2.669893813751381, −2.243599223309768, −1.375520758646098, −0.7000837864831691, 0.7000837864831691, 1.375520758646098, 2.243599223309768, 2.669893813751381, 3.075102800879225, 3.809448450756095, 4.505495832804927, 4.989996973633639, 5.506643723255510, 5.784566887400274, 6.742257566562262, 7.217238280127678, 7.541886544822074, 8.144196767658846, 8.620996410570280, 9.401891942077475, 9.639554702953989, 10.29469362412058, 10.73826672686368, 11.31662881774289, 11.63704726962211, 12.46683960089896, 12.85615738228401, 13.10464404638792, 13.68017142186039

Graph of the $Z$-function along the critical line