| L(s) = 1 | + (2.56 − 2.56i)3-s + (9.58 + 9.58i)7-s − 4.16i·9-s + 3.31·11-s + (−7.01 + 7.01i)13-s + (3.73 + 3.73i)17-s − 6.94i·19-s + 49.1·21-s + (−10.2 + 10.2i)23-s + (12.4 + 12.4i)27-s + 49.3i·29-s + 0.909·31-s + (8.50 − 8.50i)33-s + (−1.17 − 1.17i)37-s + 35.9i·39-s + ⋯ |
| L(s) = 1 | + (0.855 − 0.855i)3-s + (1.36 + 1.36i)7-s − 0.462i·9-s + 0.301·11-s + (−0.539 + 0.539i)13-s + (0.219 + 0.219i)17-s − 0.365i·19-s + 2.34·21-s + (−0.444 + 0.444i)23-s + (0.459 + 0.459i)27-s + 1.70i·29-s + 0.0293·31-s + (0.257 − 0.257i)33-s + (−0.0317 − 0.0317i)37-s + 0.922i·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.899 - 0.437i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1100 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.899 - 0.437i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{3}{2})\) |
\(\approx\) |
\(3.004079353\) |
| \(L(\frac12)\) |
\(\approx\) |
\(3.004079353\) |
| \(L(2)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 11 | \( 1 - 3.31T \) |
| good | 3 | \( 1 + (-2.56 + 2.56i)T - 9iT^{2} \) |
| 7 | \( 1 + (-9.58 - 9.58i)T + 49iT^{2} \) |
| 13 | \( 1 + (7.01 - 7.01i)T - 169iT^{2} \) |
| 17 | \( 1 + (-3.73 - 3.73i)T + 289iT^{2} \) |
| 19 | \( 1 + 6.94iT - 361T^{2} \) |
| 23 | \( 1 + (10.2 - 10.2i)T - 529iT^{2} \) |
| 29 | \( 1 - 49.3iT - 841T^{2} \) |
| 31 | \( 1 - 0.909T + 961T^{2} \) |
| 37 | \( 1 + (1.17 + 1.17i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 - 11.7T + 1.68e3T^{2} \) |
| 43 | \( 1 + (-30.2 + 30.2i)T - 1.84e3iT^{2} \) |
| 47 | \( 1 + (3.10 + 3.10i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 + (54.9 - 54.9i)T - 2.80e3iT^{2} \) |
| 59 | \( 1 + 51.2iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 71.9T + 3.72e3T^{2} \) |
| 67 | \( 1 + (22.3 + 22.3i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 - 10.6T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-85.4 + 85.4i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 + 0.878iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (-82.9 + 82.9i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 - 114. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-42.4 - 42.4i)T + 9.40e3iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.165515664234045180367821468323, −8.971452226317943409997418050122, −7.987549980131317485095624985959, −7.53662728976839854354247869897, −6.47429346865606016639065553447, −5.39243168717465773965055270265, −4.63217850778606076268428457160, −3.13540433787341683571570997348, −2.11870740315482424087786518653, −1.53546947209991434324897590980,
0.853230803686723843254713132600, 2.27168527978522309939094512638, 3.54403981222881886004498560293, 4.30335588402555678494842931412, 4.88725850777894656147273636554, 6.22271679781711021216407541677, 7.52225889921277490046462355799, 7.920485372515652237071651513918, 8.727968134839603199344413295480, 9.821725764033413262293630274675