Properties

Label 2-1100-11.10-c2-0-34
Degree $2$
Conductor $1100$
Sign $-0.791 - 0.611i$
Analytic cond. $29.9728$
Root an. cond. $5.47474$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.11·3-s − 12.3i·7-s + 0.701·9-s + (−8.70 − 6.72i)11-s − 8.64i·13-s − 12.3i·17-s − 24.9i·19-s + 38.3i·21-s + 1.85·23-s + 25.8·27-s + 51.8i·29-s − 22.5·31-s + (27.1 + 20.9i)33-s − 0.603·37-s + 26.9i·39-s + ⋯
L(s)  = 1  − 1.03·3-s − 1.75i·7-s + 0.0779·9-s + (−0.791 − 0.611i)11-s − 0.664i·13-s − 0.724i·17-s − 1.31i·19-s + 1.82i·21-s + 0.0808·23-s + 0.957·27-s + 1.78i·29-s − 0.726·31-s + (0.821 + 0.635i)33-s − 0.0163·37-s + 0.690i·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.791 - 0.611i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1100 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.791 - 0.611i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1100\)    =    \(2^{2} \cdot 5^{2} \cdot 11\)
Sign: $-0.791 - 0.611i$
Analytic conductor: \(29.9728\)
Root analytic conductor: \(5.47474\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1100} (901, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1100,\ (\ :1),\ -0.791 - 0.611i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.4528029036\)
\(L(\frac12)\) \(\approx\) \(0.4528029036\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
11 \( 1 + (8.70 + 6.72i)T \)
good3 \( 1 + 3.11T + 9T^{2} \)
7 \( 1 + 12.3iT - 49T^{2} \)
13 \( 1 + 8.64iT - 169T^{2} \)
17 \( 1 + 12.3iT - 289T^{2} \)
19 \( 1 + 24.9iT - 361T^{2} \)
23 \( 1 - 1.85T + 529T^{2} \)
29 \( 1 - 51.8iT - 841T^{2} \)
31 \( 1 + 22.5T + 961T^{2} \)
37 \( 1 + 0.603T + 1.36e3T^{2} \)
41 \( 1 + 49.8iT - 1.68e3T^{2} \)
43 \( 1 + 50.5iT - 1.84e3T^{2} \)
47 \( 1 - 31.1T + 2.20e3T^{2} \)
53 \( 1 - 51.7T + 2.80e3T^{2} \)
59 \( 1 + 35.1T + 3.48e3T^{2} \)
61 \( 1 - 2.00iT - 3.72e3T^{2} \)
67 \( 1 + 7.76T + 4.48e3T^{2} \)
71 \( 1 - 98.1T + 5.04e3T^{2} \)
73 \( 1 - 18.5iT - 5.32e3T^{2} \)
79 \( 1 - 130. iT - 6.24e3T^{2} \)
83 \( 1 + 23.3iT - 6.88e3T^{2} \)
89 \( 1 + 121.T + 7.92e3T^{2} \)
97 \( 1 + 99.1T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.239141762522290767399122475874, −8.250308196963274367832949969992, −7.13634697798090947926856200469, −6.90954575886964082069055964214, −5.49215512035549079648133818651, −5.08526351698008020490401384425, −3.90537166048659919603840418385, −2.84796999519312341851622176049, −0.902356314465421248930010360729, −0.20315285834110559862551150799, 1.78816947295396462928959543586, 2.75651990993038894504721489996, 4.27370358658745187765420553967, 5.28366070802261717250419400476, 5.88562077376523949644142091396, 6.43161335451513219641201727365, 7.79621334368746437241609217857, 8.470214986510458624722617712263, 9.447551079142819794460962036292, 10.14072834924662702559117929054

Graph of the $Z$-function along the critical line