| L(s) = 1 | − 3.11·3-s − 12.3i·7-s + 0.701·9-s + (−8.70 − 6.72i)11-s − 8.64i·13-s − 12.3i·17-s − 24.9i·19-s + 38.3i·21-s + 1.85·23-s + 25.8·27-s + 51.8i·29-s − 22.5·31-s + (27.1 + 20.9i)33-s − 0.603·37-s + 26.9i·39-s + ⋯ |
| L(s) = 1 | − 1.03·3-s − 1.75i·7-s + 0.0779·9-s + (−0.791 − 0.611i)11-s − 0.664i·13-s − 0.724i·17-s − 1.31i·19-s + 1.82i·21-s + 0.0808·23-s + 0.957·27-s + 1.78i·29-s − 0.726·31-s + (0.821 + 0.635i)33-s − 0.0163·37-s + 0.690i·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.791 - 0.611i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1100 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.791 - 0.611i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{3}{2})\) |
\(\approx\) |
\(0.4528029036\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.4528029036\) |
| \(L(2)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 11 | \( 1 + (8.70 + 6.72i)T \) |
| good | 3 | \( 1 + 3.11T + 9T^{2} \) |
| 7 | \( 1 + 12.3iT - 49T^{2} \) |
| 13 | \( 1 + 8.64iT - 169T^{2} \) |
| 17 | \( 1 + 12.3iT - 289T^{2} \) |
| 19 | \( 1 + 24.9iT - 361T^{2} \) |
| 23 | \( 1 - 1.85T + 529T^{2} \) |
| 29 | \( 1 - 51.8iT - 841T^{2} \) |
| 31 | \( 1 + 22.5T + 961T^{2} \) |
| 37 | \( 1 + 0.603T + 1.36e3T^{2} \) |
| 41 | \( 1 + 49.8iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 50.5iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 31.1T + 2.20e3T^{2} \) |
| 53 | \( 1 - 51.7T + 2.80e3T^{2} \) |
| 59 | \( 1 + 35.1T + 3.48e3T^{2} \) |
| 61 | \( 1 - 2.00iT - 3.72e3T^{2} \) |
| 67 | \( 1 + 7.76T + 4.48e3T^{2} \) |
| 71 | \( 1 - 98.1T + 5.04e3T^{2} \) |
| 73 | \( 1 - 18.5iT - 5.32e3T^{2} \) |
| 79 | \( 1 - 130. iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 23.3iT - 6.88e3T^{2} \) |
| 89 | \( 1 + 121.T + 7.92e3T^{2} \) |
| 97 | \( 1 + 99.1T + 9.40e3T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.239141762522290767399122475874, −8.250308196963274367832949969992, −7.13634697798090947926856200469, −6.90954575886964082069055964214, −5.49215512035549079648133818651, −5.08526351698008020490401384425, −3.90537166048659919603840418385, −2.84796999519312341851622176049, −0.902356314465421248930010360729, −0.20315285834110559862551150799,
1.78816947295396462928959543586, 2.75651990993038894504721489996, 4.27370358658745187765420553967, 5.28366070802261717250419400476, 5.88562077376523949644142091396, 6.43161335451513219641201727365, 7.79621334368746437241609217857, 8.470214986510458624722617712263, 9.447551079142819794460962036292, 10.14072834924662702559117929054