Properties

Label 2-1100-11.10-c2-0-26
Degree $2$
Conductor $1100$
Sign $-0.225 + 0.974i$
Analytic cond. $29.9728$
Root an. cond. $5.47474$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.712·3-s + 7.86i·7-s − 8.49·9-s + (2.47 − 10.7i)11-s + 1.76i·13-s + 15.1i·17-s − 3.61i·19-s − 5.60i·21-s − 10.7·23-s + 12.4·27-s − 26.5i·29-s − 21.3·31-s + (−1.76 + 7.64i)33-s − 1.48·37-s − 1.25i·39-s + ⋯
L(s)  = 1  − 0.237·3-s + 1.12i·7-s − 0.943·9-s + (0.225 − 0.974i)11-s + 0.135i·13-s + 0.888i·17-s − 0.190i·19-s − 0.267i·21-s − 0.465·23-s + 0.461·27-s − 0.916i·29-s − 0.690·31-s + (−0.0535 + 0.231i)33-s − 0.0400·37-s − 0.0322i·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.225 + 0.974i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1100 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.225 + 0.974i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1100\)    =    \(2^{2} \cdot 5^{2} \cdot 11\)
Sign: $-0.225 + 0.974i$
Analytic conductor: \(29.9728\)
Root analytic conductor: \(5.47474\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1100} (901, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1100,\ (\ :1),\ -0.225 + 0.974i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.7161647130\)
\(L(\frac12)\) \(\approx\) \(0.7161647130\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
11 \( 1 + (-2.47 + 10.7i)T \)
good3 \( 1 + 0.712T + 9T^{2} \)
7 \( 1 - 7.86iT - 49T^{2} \)
13 \( 1 - 1.76iT - 169T^{2} \)
17 \( 1 - 15.1iT - 289T^{2} \)
19 \( 1 + 3.61iT - 361T^{2} \)
23 \( 1 + 10.7T + 529T^{2} \)
29 \( 1 + 26.5iT - 841T^{2} \)
31 \( 1 + 21.3T + 961T^{2} \)
37 \( 1 + 1.48T + 1.36e3T^{2} \)
41 \( 1 + 23.4iT - 1.68e3T^{2} \)
43 \( 1 + 60.3iT - 1.84e3T^{2} \)
47 \( 1 - 1.97T + 2.20e3T^{2} \)
53 \( 1 - 16.5T + 2.80e3T^{2} \)
59 \( 1 - 78.3T + 3.48e3T^{2} \)
61 \( 1 + 27.2iT - 3.72e3T^{2} \)
67 \( 1 + 56.0T + 4.48e3T^{2} \)
71 \( 1 + 41.7T + 5.04e3T^{2} \)
73 \( 1 + 106. iT - 5.32e3T^{2} \)
79 \( 1 - 89.4iT - 6.24e3T^{2} \)
83 \( 1 + 132. iT - 6.88e3T^{2} \)
89 \( 1 + 59.5T + 7.92e3T^{2} \)
97 \( 1 + 46.9T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.184504366453430233893646984934, −8.668518023857641608033156631926, −8.021621011037448446258846188739, −6.72133449423971607899482884832, −5.75408973128781997510742985150, −5.55407761932898865269949720546, −4.07243616213132952728533763706, −3.02163214914010747775416127523, −1.98811110003249855022817966545, −0.24084848063455514285839829092, 1.16185356376559665454435946158, 2.62428309111375672287975666144, 3.77439557335367413989705717244, 4.70703049539196078602819002296, 5.58662564763801690186594834609, 6.68885468441161160950452272195, 7.32237965030068615240824455351, 8.162539845601788680981196791253, 9.183163763729057747177913729884, 9.937059664630170506141502034207

Graph of the $Z$-function along the critical line