Properties

Label 2-1100-11.10-c2-0-23
Degree $2$
Conductor $1100$
Sign $1$
Analytic cond. $29.9728$
Root an. cond. $5.47474$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.67·3-s − 1.86·9-s + 11·11-s + 45.2·23-s − 29.0·27-s + 24.5·31-s + 29.3·33-s + 13.1·37-s + 79.5·47-s + 49·49-s − 79.5·53-s + 96.5·59-s − 34.3·67-s + 120.·69-s + 23.4·71-s − 60.7·81-s + 177.·89-s + 65.6·93-s + 2.30·97-s − 20.4·99-s − 79.5·103-s + 35.1·111-s − 221.·113-s + ⋯
L(s)  = 1  + 0.890·3-s − 0.206·9-s + 11-s + 1.96·23-s − 1.07·27-s + 0.793·31-s + 0.890·33-s + 0.356·37-s + 1.69·47-s + 0.999·49-s − 1.50·53-s + 1.63·59-s − 0.512·67-s + 1.75·69-s + 0.329·71-s − 0.750·81-s + 1.99·89-s + 0.706·93-s + 0.0237·97-s − 0.206·99-s − 0.772·103-s + 0.317·111-s − 1.95·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1100 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1100\)    =    \(2^{2} \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(29.9728\)
Root analytic conductor: \(5.47474\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1100} (901, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1100,\ (\ :1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.805627717\)
\(L(\frac12)\) \(\approx\) \(2.805627717\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
11 \( 1 - 11T \)
good3 \( 1 - 2.67T + 9T^{2} \)
7 \( 1 - 49T^{2} \)
13 \( 1 - 169T^{2} \)
17 \( 1 - 289T^{2} \)
19 \( 1 - 361T^{2} \)
23 \( 1 - 45.2T + 529T^{2} \)
29 \( 1 - 841T^{2} \)
31 \( 1 - 24.5T + 961T^{2} \)
37 \( 1 - 13.1T + 1.36e3T^{2} \)
41 \( 1 - 1.68e3T^{2} \)
43 \( 1 - 1.84e3T^{2} \)
47 \( 1 - 79.5T + 2.20e3T^{2} \)
53 \( 1 + 79.5T + 2.80e3T^{2} \)
59 \( 1 - 96.5T + 3.48e3T^{2} \)
61 \( 1 - 3.72e3T^{2} \)
67 \( 1 + 34.3T + 4.48e3T^{2} \)
71 \( 1 - 23.4T + 5.04e3T^{2} \)
73 \( 1 - 5.32e3T^{2} \)
79 \( 1 - 6.24e3T^{2} \)
83 \( 1 - 6.88e3T^{2} \)
89 \( 1 - 177.T + 7.92e3T^{2} \)
97 \( 1 - 2.30T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.277564181855092347655457070701, −9.014850342381472937857022574408, −8.133293768379835084547190381568, −7.24087720797753512994958049469, −6.41663406836379611528668241676, −5.35298762866890582872920365700, −4.23990939906990944371510118665, −3.29987879451870537324516319151, −2.41678073056925611142483919343, −1.02799407163904526391667560502, 1.02799407163904526391667560502, 2.41678073056925611142483919343, 3.29987879451870537324516319151, 4.23990939906990944371510118665, 5.35298762866890582872920365700, 6.41663406836379611528668241676, 7.24087720797753512994958049469, 8.133293768379835084547190381568, 9.014850342381472937857022574408, 9.277564181855092347655457070701

Graph of the $Z$-function along the critical line