Properties

Label 2-1100-11.10-c2-0-15
Degree $2$
Conductor $1100$
Sign $0.362 - 0.931i$
Analytic cond. $29.9728$
Root an. cond. $5.47474$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.14·3-s − 1.70i·7-s + 8.18·9-s + (−3.98 + 10.2i)11-s + 16.6i·13-s − 0.512i·17-s + 19.5i·19-s − 7.07i·21-s + 11.2·23-s − 3.35·27-s + 48.1i·29-s + 5.40·31-s + (−16.5 + 42.5i)33-s + 0.530·37-s + 68.8i·39-s + ⋯
L(s)  = 1  + 1.38·3-s − 0.243i·7-s + 0.909·9-s + (−0.362 + 0.931i)11-s + 1.27i·13-s − 0.0301i·17-s + 1.02i·19-s − 0.336i·21-s + 0.488·23-s − 0.124·27-s + 1.65i·29-s + 0.174·31-s + (−0.501 + 1.28i)33-s + 0.0143·37-s + 1.76i·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.362 - 0.931i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1100 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.362 - 0.931i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1100\)    =    \(2^{2} \cdot 5^{2} \cdot 11\)
Sign: $0.362 - 0.931i$
Analytic conductor: \(29.9728\)
Root analytic conductor: \(5.47474\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1100} (901, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1100,\ (\ :1),\ 0.362 - 0.931i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.819019863\)
\(L(\frac12)\) \(\approx\) \(2.819019863\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
11 \( 1 + (3.98 - 10.2i)T \)
good3 \( 1 - 4.14T + 9T^{2} \)
7 \( 1 + 1.70iT - 49T^{2} \)
13 \( 1 - 16.6iT - 169T^{2} \)
17 \( 1 + 0.512iT - 289T^{2} \)
19 \( 1 - 19.5iT - 361T^{2} \)
23 \( 1 - 11.2T + 529T^{2} \)
29 \( 1 - 48.1iT - 841T^{2} \)
31 \( 1 - 5.40T + 961T^{2} \)
37 \( 1 - 0.530T + 1.36e3T^{2} \)
41 \( 1 + 28.0iT - 1.68e3T^{2} \)
43 \( 1 + 3.65iT - 1.84e3T^{2} \)
47 \( 1 + 3.58T + 2.20e3T^{2} \)
53 \( 1 - 51.9T + 2.80e3T^{2} \)
59 \( 1 - 41.1T + 3.48e3T^{2} \)
61 \( 1 + 42.3iT - 3.72e3T^{2} \)
67 \( 1 - 73.5T + 4.48e3T^{2} \)
71 \( 1 + 13.3T + 5.04e3T^{2} \)
73 \( 1 - 107. iT - 5.32e3T^{2} \)
79 \( 1 + 15.6iT - 6.24e3T^{2} \)
83 \( 1 + 16.3iT - 6.88e3T^{2} \)
89 \( 1 + 140.T + 7.92e3T^{2} \)
97 \( 1 - 97.0T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.678781918513294310385678475042, −8.927677977791801582049778320727, −8.322645689267651660983502532303, −7.32090487398365465712838307267, −6.87487577314074529155566495394, −5.44090615311492594218591019217, −4.32560844743680725168062013091, −3.57595547312161217332203229512, −2.44522624073183504556396713733, −1.58136072133687091250351709713, 0.70505755889481655142304607539, 2.44396812105554030431665734359, 2.96793831839579830293429010912, 3.94864071942835729846376029530, 5.20316712365035016284497421220, 6.09063099375723455332266010565, 7.30353443627122690741181805277, 8.084438425932290412956919977667, 8.560585214927672446602858758874, 9.342562708727747051814744076035

Graph of the $Z$-function along the critical line