Properties

Label 2-110-55.7-c1-0-1
Degree $2$
Conductor $110$
Sign $0.663 + 0.748i$
Analytic cond. $0.878354$
Root an. cond. $0.937205$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.987 + 0.156i)2-s + (−0.176 − 0.346i)3-s + (0.951 − 0.309i)4-s + (0.0767 − 2.23i)5-s + (0.228 + 0.314i)6-s + (−0.0136 − 0.00697i)7-s + (−0.891 + 0.453i)8-s + (1.67 − 2.30i)9-s + (0.273 + 2.21i)10-s + (2.43 − 2.25i)11-s + (−0.274 − 0.274i)12-s + (0.366 + 2.31i)13-s + (0.0146 + 0.00474i)14-s + (−0.787 + 0.367i)15-s + (0.809 − 0.587i)16-s + (0.615 − 3.88i)17-s + ⋯
L(s)  = 1  + (−0.698 + 0.110i)2-s + (−0.101 − 0.199i)3-s + (0.475 − 0.154i)4-s + (0.0343 − 0.999i)5-s + (0.0932 + 0.128i)6-s + (−0.00517 − 0.00263i)7-s + (−0.315 + 0.160i)8-s + (0.558 − 0.768i)9-s + (0.0865 + 0.701i)10-s + (0.733 − 0.679i)11-s + (−0.0793 − 0.0793i)12-s + (0.101 + 0.641i)13-s + (0.00390 + 0.00126i)14-s + (−0.203 + 0.0949i)15-s + (0.202 − 0.146i)16-s + (0.149 − 0.942i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.663 + 0.748i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.663 + 0.748i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(110\)    =    \(2 \cdot 5 \cdot 11\)
Sign: $0.663 + 0.748i$
Analytic conductor: \(0.878354\)
Root analytic conductor: \(0.937205\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{110} (7, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 110,\ (\ :1/2),\ 0.663 + 0.748i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.707000 - 0.317971i\)
\(L(\frac12)\) \(\approx\) \(0.707000 - 0.317971i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.987 - 0.156i)T \)
5 \( 1 + (-0.0767 + 2.23i)T \)
11 \( 1 + (-2.43 + 2.25i)T \)
good3 \( 1 + (0.176 + 0.346i)T + (-1.76 + 2.42i)T^{2} \)
7 \( 1 + (0.0136 + 0.00697i)T + (4.11 + 5.66i)T^{2} \)
13 \( 1 + (-0.366 - 2.31i)T + (-12.3 + 4.01i)T^{2} \)
17 \( 1 + (-0.615 + 3.88i)T + (-16.1 - 5.25i)T^{2} \)
19 \( 1 + (1.78 - 5.49i)T + (-15.3 - 11.1i)T^{2} \)
23 \( 1 + (4.75 - 4.75i)T - 23iT^{2} \)
29 \( 1 + (-1.28 - 3.94i)T + (-23.4 + 17.0i)T^{2} \)
31 \( 1 + (-4.70 - 3.41i)T + (9.57 + 29.4i)T^{2} \)
37 \( 1 + (-0.512 + 1.00i)T + (-21.7 - 29.9i)T^{2} \)
41 \( 1 + (4.46 + 1.45i)T + (33.1 + 24.0i)T^{2} \)
43 \( 1 + (-5.68 - 5.68i)T + 43iT^{2} \)
47 \( 1 + (-1.37 + 0.703i)T + (27.6 - 38.0i)T^{2} \)
53 \( 1 + (-13.8 + 2.19i)T + (50.4 - 16.3i)T^{2} \)
59 \( 1 + (1.86 - 0.606i)T + (47.7 - 34.6i)T^{2} \)
61 \( 1 + (-4.84 - 6.66i)T + (-18.8 + 58.0i)T^{2} \)
67 \( 1 + (-3.67 - 3.67i)T + 67iT^{2} \)
71 \( 1 + (5.20 - 3.77i)T + (21.9 - 67.5i)T^{2} \)
73 \( 1 + (-2.09 + 4.10i)T + (-42.9 - 59.0i)T^{2} \)
79 \( 1 + (3.84 + 2.79i)T + (24.4 + 75.1i)T^{2} \)
83 \( 1 + (13.1 + 2.08i)T + (78.9 + 25.6i)T^{2} \)
89 \( 1 - 9.48iT - 89T^{2} \)
97 \( 1 + (-0.696 - 4.39i)T + (-92.2 + 29.9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.50947825315040293126500216252, −12.16317749445887214222456024783, −11.70341844676058818972265881067, −10.04274676531490840029916668432, −9.194794339573740260748421781386, −8.268276748983136590346177439884, −6.90718709623447829774128356799, −5.73019614549688581421628790217, −3.94687721566941772639432061320, −1.32678809804840175430578132392, 2.33247816287611911136931004971, 4.21462900478563658545352072343, 6.19309470777183387510697281519, 7.25094568214617244623950633754, 8.355242092818255602358841886524, 9.875638584001923501673862974348, 10.45655323351507765926219062678, 11.42337255914033301884705662977, 12.63885436917099311419421119770, 13.87052697573410268801640343463

Graph of the $Z$-function along the critical line