Properties

Label 2-110-55.17-c1-0-5
Degree $2$
Conductor $110$
Sign $0.942 - 0.334i$
Analytic cond. $0.878354$
Root an. cond. $0.937205$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.891 + 0.453i)2-s + (1.61 − 0.256i)3-s + (0.587 + 0.809i)4-s + (−2.22 + 0.182i)5-s + (1.55 + 0.506i)6-s + (0.119 − 0.753i)7-s + (0.156 + 0.987i)8-s + (−0.299 + 0.0972i)9-s + (−2.06 − 0.849i)10-s + (−1.49 − 2.95i)11-s + (1.15 + 1.15i)12-s + (−0.387 + 0.760i)13-s + (0.448 − 0.616i)14-s + (−3.56 + 0.866i)15-s + (−0.309 + 0.951i)16-s + (−0.657 − 1.29i)17-s + ⋯
L(s)  = 1  + (0.630 + 0.321i)2-s + (0.934 − 0.148i)3-s + (0.293 + 0.404i)4-s + (−0.996 + 0.0816i)5-s + (0.636 + 0.206i)6-s + (0.0450 − 0.284i)7-s + (0.0553 + 0.349i)8-s + (−0.0997 + 0.0324i)9-s + (−0.654 − 0.268i)10-s + (−0.451 − 0.892i)11-s + (0.334 + 0.334i)12-s + (−0.107 + 0.210i)13-s + (0.119 − 0.164i)14-s + (−0.919 + 0.223i)15-s + (−0.0772 + 0.237i)16-s + (−0.159 − 0.312i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.942 - 0.334i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.942 - 0.334i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(110\)    =    \(2 \cdot 5 \cdot 11\)
Sign: $0.942 - 0.334i$
Analytic conductor: \(0.878354\)
Root analytic conductor: \(0.937205\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{110} (17, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 110,\ (\ :1/2),\ 0.942 - 0.334i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.52300 + 0.262085i\)
\(L(\frac12)\) \(\approx\) \(1.52300 + 0.262085i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.891 - 0.453i)T \)
5 \( 1 + (2.22 - 0.182i)T \)
11 \( 1 + (1.49 + 2.95i)T \)
good3 \( 1 + (-1.61 + 0.256i)T + (2.85 - 0.927i)T^{2} \)
7 \( 1 + (-0.119 + 0.753i)T + (-6.65 - 2.16i)T^{2} \)
13 \( 1 + (0.387 - 0.760i)T + (-7.64 - 10.5i)T^{2} \)
17 \( 1 + (0.657 + 1.29i)T + (-9.99 + 13.7i)T^{2} \)
19 \( 1 + (-4.09 - 2.97i)T + (5.87 + 18.0i)T^{2} \)
23 \( 1 + (1.65 - 1.65i)T - 23iT^{2} \)
29 \( 1 + (-0.552 + 0.401i)T + (8.96 - 27.5i)T^{2} \)
31 \( 1 + (1.08 + 3.34i)T + (-25.0 + 18.2i)T^{2} \)
37 \( 1 + (8.01 + 1.26i)T + (35.1 + 11.4i)T^{2} \)
41 \( 1 + (-7.30 + 10.0i)T + (-12.6 - 38.9i)T^{2} \)
43 \( 1 + (-7.61 - 7.61i)T + 43iT^{2} \)
47 \( 1 + (-1.98 - 12.5i)T + (-44.6 + 14.5i)T^{2} \)
53 \( 1 + (7.31 + 3.72i)T + (31.1 + 42.8i)T^{2} \)
59 \( 1 + (0.254 + 0.350i)T + (-18.2 + 56.1i)T^{2} \)
61 \( 1 + (-12.0 - 3.91i)T + (49.3 + 35.8i)T^{2} \)
67 \( 1 + (3.82 + 3.82i)T + 67iT^{2} \)
71 \( 1 + (2.45 - 7.55i)T + (-57.4 - 41.7i)T^{2} \)
73 \( 1 + (-1.13 - 0.179i)T + (69.4 + 22.5i)T^{2} \)
79 \( 1 + (3.11 + 9.59i)T + (-63.9 + 46.4i)T^{2} \)
83 \( 1 + (0.212 - 0.108i)T + (48.7 - 67.1i)T^{2} \)
89 \( 1 + 11.2iT - 89T^{2} \)
97 \( 1 + (-6.45 + 12.6i)T + (-57.0 - 78.4i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.05349306853106953199752549833, −12.90657898115069734579676616096, −11.76621292330904387414542743563, −10.84859188209757353918623089263, −9.107094561953468903902194253448, −7.987133507437764586259189477267, −7.38606334275503584840956522665, −5.66768322797412327138483915211, −4.01190780461266302182718900185, −2.92098896022043804587208625969, 2.63148429925184712151931523258, 3.87840837409952269174922803917, 5.20017227232130285701441001991, 7.08226816278506956060590122683, 8.180816343729966112239937434400, 9.273278854489555988499284415581, 10.57084099304183619846417218463, 11.77462005952393222689032052090, 12.54440739943567119127954549376, 13.67384755291122868592569579971

Graph of the $Z$-function along the critical line